搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型的三壁碳纳米管螺旋振荡器:分子动力学模拟

陈玉江 江五贵 林演文 郑盼

引用本文:
Citation:

一种新型的三壁碳纳米管螺旋振荡器:分子动力学模拟

陈玉江, 江五贵, 林演文, 郑盼

A novel triple-walled carbon nanotube screwing oscillator: a molecular dynamics simulation

Chen Yu-Jiang, Jiang Wu-Gui, Lin Yan-Wen, Zheng Pan
PDF
HTML
导出引用
  • 本文提出了一种新型的三壁碳纳米管螺旋振荡器, 通过对内管施加轴向激励和中管施加旋转激励的方式, 来同时获得内管和中管的螺旋信号输出. 采用分子动力学方法研究了该振荡器在拉转耦合下的振荡行为. 在模拟过程中, 固定的外管充当振荡器定子的作用, 内管和中管在分别施加一定的初始激励后保持自由振荡. 模拟结果表明, 在内管拉出距离一定的情况下, 内管的自激发旋转频率随着中管初始旋转激励频率的增加而增加, 且最终趋于一个稍低于旋转激励的稳定值. 当施加的初始旋转频率在400 GHz以内时, 内管达到稳定的旋转频率$ {\omega _{{\rm{ I}}}}$与旋转激励频率$ {\omega _{{\rm{ M 0}}}}$的关系为$ {\omega _{{\rm{ I}}}} = 46{{\rm{e}}^{0.0045{\omega _{{\rm{M 0}}}}}}$. 尽管提高初始旋转激励频率可以提高内管的旋转频率, 但随着中管初始旋转频率的增加内管的轴向性能下降, 不稳定振荡加剧. 同时中管轴向振荡的稳定性与施加在其上面的初始旋转激励的频率有关, 过高的初始旋转频率不仅会加大非轴向摆动距离, 导致轴向振荡性能下降, 而且旋转损耗比也将随着初始旋转频率的增加而增加. 因此, 合理的控制初始旋转频率的幅值是设计低损耗三壁碳纳米管螺旋振荡器的关键.
    A novel triple-walled carbon nanotube (TWCNT) screwing oscillator is proposed, in which screwing motion signals of both inner tube and middle tube are outputted simultaneously by applying an axial excitation to the inner tube and a rotating excitation to the middle tube. The molecular dynamic method is used to investigate the oscillatory behavior of the TWCNT oscillator under screwing motion. In the simulation process, the fixed outer tube acts as the oscillator stator, while the inner tube and the middle tube keep free oscillation after applying a certain initial excitation respectively. The simulation results show that the rotation frequency of the inner tube increases with the increase of the initial rotation excitation frequency of the middle tube when the inner tube is pulled out at a certain distance, and eventually tends to a stable value slightly lower than the rotation excitation. When the applied initial rotation frequency is within 400 GHz, the self-excited stable ration frequency ($ {\omega _{\rm{I}}}$) of the inner tube can be expressed as a function of the initial rotation excitation frequency ($ {\omega _{{\rm{M}}0}}$), $ {\omega _{\rm{I}}} = 46{{\rm{e}}^{0.0045{\omega _{{\rm{M0}}}}}}$. Although increasing the initial rotation excitation frequency can enhance the rotation frequency of the inner tube, as the initial rotation frequency of the middle tube increases, the axial performance of the inner tube is degraded and the unstable oscillations is aggravated. At the same time, the stability of the axial oscillation of the middle tube is related to the frequency of the initial rotational excitation applied to it. Too high an initial rotational frequency will not only increase the off-axis rocking motion distance, resulting in a degradation in axial oscillation performance, but also the rotation loss will increase as the initial rotation frequency increases. Therefore, a reasonable control of the amplitude of the initial rotation frequency is the key to designing a low-loss TWCNTs screwing oscillator.
      通信作者: 江五贵, jiangwugui@nchu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11772145)资助的课题
      Corresponding author: Jiang Wu-Gui, jiangwugui@nchu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11772145)
    [1]

    Iijima S 1991 Nature 354 56Google Scholar

    [2]

    Zou J, Ji B, Feng X Q, Gao H J 2006 Nano Lett. 6 430Google Scholar

    [3]

    Huang Z 2008 Nanotechnology 19 045701Google Scholar

    [4]

    Bailey S W D, Amanatidis I, Lambert C J 2008 Phys. Rev. Lett. 100 256802Google Scholar

    [5]

    Yang W D, Wang X, Fang C Q 2015 Composites Part B 82 143Google Scholar

    [6]

    Chiu H Y, Hung P, Postma H W C, Bockrath M 2008 Nano Lett. 8 4342Google Scholar

    [7]

    Qin Z, Zou J, Feng X Q 2008 J. Comput. Theor. Nanosci. 5 1403Google Scholar

    [8]

    Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O, Galvão D S 2004 Nanotechnology 15 S184Google Scholar

    [9]

    Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O, Galvao D S 2003 Phys. Rev. Lett. 90 055504Google Scholar

    [10]

    Cumings J, Zettl A 2000 Science 289 602Google Scholar

    [11]

    Zheng Q, Liu J Z, Jiang Q 2002 Phys. Rev. B 65 245409Google Scholar

    [12]

    Cai K, Yin H, Qin Q H, Li Y 2014 Nano Lett. 14 2558Google Scholar

    [13]

    Servantie J, Gaspard P 2006 Phys. Rev. Lett. 97 13831

    [14]

    Cook E H, Buehler M J, Spakovszky Z S 2013 J. Mech. Phys. Solids. 61 652Google Scholar

    [15]

    Zhao Y, Ma C C, Chen G, Jiang Q 2003 Phys. Rev. Lett. 91 175504Google Scholar

    [16]

    Guo W L, Guo Y F, Gao H J, Zheng Q S 2003 Phys. Rev. Lett. 91 125501Google Scholar

    [17]

    Kang J W, Lee J H 2008 Nanotechnology 19 285704Google Scholar

    [18]

    Liu P, Zhang Y W, Lu C 2005 J. Appl. Phys. 98 014301Google Scholar

    [19]

    Liu P, Zhang Y W, Lu C J 2006 Carbon 44 27Google Scholar

    [20]

    Chen L, Jiang W G, Zou H, Feng X Q, Qin Q H, Li X 2019 Phys. Lett. A. 383 2309Google Scholar

    [21]

    Lin Y W, Jiang W G, Qin Q H, Chen Y J 2019 Appl. Phys. Express. 12 065001Google Scholar

    [22]

    Voter A F, Doll J D 1984 J. Chem. Phys. 80 5832Google Scholar

    [23]

    Harrison J A, White C T, Colton R J, Brenner D W 1992 Phys. Rev. B. 46 9700Google Scholar

    [24]

    Brenner D W, Shenderove O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Matter 14 783Google Scholar

    [25]

    Zou J, Ji B H, Feng X Q, Gao H J 2006 Small 2 1348Google Scholar

    [26]

    Doll J D 1982 J. Chem. Phys. 77 479Google Scholar

    [27]

    Lammps molecular dynamics simulator, http://lammps.sandia.gov, 2014 [2020-5-31]

    [28]

    邹航2019 硕士学位论文 (南昌: 南昌航空大学)

    Zhou H 2019 M. S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)

  • 图 1  三壁碳纳米管振荡器模型示意图 (a) 三视图; (b) 俯视图; (c) 螺旋运动示意图

    Fig. 1.  Schematic diagram of the triple-walled carbon nanotubes oscillator model: (a) Three view; (b) vertical view (c) screwing motion.

    图 2  NVE过程中不同${\omega _{{\rm{M0}}}}$下的中管质心位置的历程图

    Fig. 2.  Histories of position of mass center of middle tubes (MCMTs) with different ${\omega _{{\rm{M0}}}}$ during the NVE process.

    图 3  NVE过程中不同${\omega _{{\rm{M0}}}}$下中管的偏轴距离

    Fig. 3.  The off-axis rocking motion distance of the MCMTs with different ${\omega _{{\rm{M0}}}}$ during the NVE process.

    图 4  中管${\omega _{{\rm{M0}}}}$在螺旋运动过程中的损耗情况

    Fig. 4.  Rotational frequency dissipation of the MCMTs with different ${\omega _{{\rm{M0}}}}$ during the screwing motion.

    图 5  内管的轴向振荡 (a) NVE过程中不同${\omega _{{\rm{M0}}}}$下的内管质心位置变化曲线; (b)内管平均振荡频率${f_{{\rm{ZI}}}}$${\omega _{{\rm{M0}}}}$的变化

    Fig. 5.  Axial oscillations of the inner tube: (a) Changes of the position of mass center of inner tubes(MCITs) with different ${\omega _{{\rm{M0}}}}$ in the NVE process; (b) ${f_{{\rm{ZI}}}}$ with respect to ${\omega _{{\rm{M0}}}}$.

    图 6  NVE过程中不同${\omega _{{\rm{M0}}}}$下两管质心的偏轴距离 (a)内管质心; (b)中管质心

    Fig. 6.  The Off-axis rocking motion distance of mass center of (a) inner tube and (b) middle tube with different ${\omega _{{\rm{M0}}}}$ during the NVE process.

    图 7  NVE过程中${\omega _{{\rm{M0}}}}$下内管的旋转频率

    Fig. 7.  Rotation frequency of the inner tube with different ${\omega _{{\rm{M0}}}}$ during the NVE process.

    图 8  ${\omega _{\rm{I}}}$${\omega _{{\rm{M0}}}}$的关系曲线

    Fig. 8.  Change of ${\omega _{\rm{I}}}$ as a function of ${\omega _{{\rm{M0}}}}$.

    表 1  碳纳米管的几何参数

    Table 1.  Geometric parameters of the carbon nanotubes.

    碳管手性(n, m)@(n, m)@(n, m)管长/nm管半径/nm管间距/nm原子数
    (9, 9)@(24, 0) @(19, 19)6/6/41.220/1.879/2.5760.329/0.349864/1344/1216
    下载: 导出CSV
  • [1]

    Iijima S 1991 Nature 354 56Google Scholar

    [2]

    Zou J, Ji B, Feng X Q, Gao H J 2006 Nano Lett. 6 430Google Scholar

    [3]

    Huang Z 2008 Nanotechnology 19 045701Google Scholar

    [4]

    Bailey S W D, Amanatidis I, Lambert C J 2008 Phys. Rev. Lett. 100 256802Google Scholar

    [5]

    Yang W D, Wang X, Fang C Q 2015 Composites Part B 82 143Google Scholar

    [6]

    Chiu H Y, Hung P, Postma H W C, Bockrath M 2008 Nano Lett. 8 4342Google Scholar

    [7]

    Qin Z, Zou J, Feng X Q 2008 J. Comput. Theor. Nanosci. 5 1403Google Scholar

    [8]

    Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O, Galvão D S 2004 Nanotechnology 15 S184Google Scholar

    [9]

    Legoas S B, Coluci V R, Braga S F, Coura P Z, Dantas S O, Galvao D S 2003 Phys. Rev. Lett. 90 055504Google Scholar

    [10]

    Cumings J, Zettl A 2000 Science 289 602Google Scholar

    [11]

    Zheng Q, Liu J Z, Jiang Q 2002 Phys. Rev. B 65 245409Google Scholar

    [12]

    Cai K, Yin H, Qin Q H, Li Y 2014 Nano Lett. 14 2558Google Scholar

    [13]

    Servantie J, Gaspard P 2006 Phys. Rev. Lett. 97 13831

    [14]

    Cook E H, Buehler M J, Spakovszky Z S 2013 J. Mech. Phys. Solids. 61 652Google Scholar

    [15]

    Zhao Y, Ma C C, Chen G, Jiang Q 2003 Phys. Rev. Lett. 91 175504Google Scholar

    [16]

    Guo W L, Guo Y F, Gao H J, Zheng Q S 2003 Phys. Rev. Lett. 91 125501Google Scholar

    [17]

    Kang J W, Lee J H 2008 Nanotechnology 19 285704Google Scholar

    [18]

    Liu P, Zhang Y W, Lu C 2005 J. Appl. Phys. 98 014301Google Scholar

    [19]

    Liu P, Zhang Y W, Lu C J 2006 Carbon 44 27Google Scholar

    [20]

    Chen L, Jiang W G, Zou H, Feng X Q, Qin Q H, Li X 2019 Phys. Lett. A. 383 2309Google Scholar

    [21]

    Lin Y W, Jiang W G, Qin Q H, Chen Y J 2019 Appl. Phys. Express. 12 065001Google Scholar

    [22]

    Voter A F, Doll J D 1984 J. Chem. Phys. 80 5832Google Scholar

    [23]

    Harrison J A, White C T, Colton R J, Brenner D W 1992 Phys. Rev. B. 46 9700Google Scholar

    [24]

    Brenner D W, Shenderove O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Matter 14 783Google Scholar

    [25]

    Zou J, Ji B H, Feng X Q, Gao H J 2006 Small 2 1348Google Scholar

    [26]

    Doll J D 1982 J. Chem. Phys. 77 479Google Scholar

    [27]

    Lammps molecular dynamics simulator, http://lammps.sandia.gov, 2014 [2020-5-31]

    [28]

    邹航2019 硕士学位论文 (南昌: 南昌航空大学)

    Zhou H 2019 M. S. Thesis (Nanchang: Nanchang Hangkong University) (in Chinese)

  • [1] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [2] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [3] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [4] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [5] 华昀峰, 张冬, 章林溪. 半刚性高分子链螺旋结构诱导纳米棒的有序结构. 物理学报, 2015, 64(8): 088201. doi: 10.7498/aps.64.088201
    [6] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [7] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [8] 马文, 陆彦文. 纳米多晶铜中冲击波阵面的分子动力学研究. 物理学报, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [9] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [10] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [11] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [12] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究. 物理学报, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [13] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [14] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟. 物理学报, 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [15] 王 磊, 张忠强, 张洪武. 双壁碳纳米管电浸润现象的分子动力学模拟. 物理学报, 2008, 57(11): 7069-7077. doi: 10.7498/aps.57.7069
    [16] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [18] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  3720
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-31
  • 修回日期:  2020-06-28
  • 上网日期:  2020-11-09
  • 刊出日期:  2020-11-20

/

返回文章
返回