搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同环境下硫化镉/铜基薄膜异质结退火对太阳电池性能调控

刘慧桢 刘蓓 董家斌 李建鹏 曹子修 刘越 孟汝涛 张毅

引用本文:
Citation:

不同环境下硫化镉/铜基薄膜异质结退火对太阳电池性能调控

刘慧桢, 刘蓓, 董家斌, 李建鹏, 曹子修, 刘越, 孟汝涛, 张毅

Regulation of solar cell performance by cadmium sulfide/copper-based thin film heterojunction annealing under different atmospheres

Liu Hui-Zhen, Liu Bei, Dong Jia-Bin, Li Jian-Peng, Cao Zi-Xiu, Liu Yue, Meng Ru-Tao, Zhang Yi
PDF
HTML
导出引用
  • 高效铜基薄膜太阳电池通常采用无机n型半导体材料CdS作为缓冲层, 因此, 缓冲层与吸收层之间的界面质量和能带匹配对载流子的收集利用至关重要. 在优化CdS基础工艺的基础上, 在含硫气氛下对硫化镉/铜基薄膜异质结进行退火的策略进一步提高CdS薄膜质量, 并将其应用到铜基太阳电池, 调控铜基薄膜电池p-n异质结能带匹配. 研究表明, CdS薄膜在含硫的惰性气氛中退火可以有效提高CdS薄膜的结晶质量并抑制CZTS/CdS异质结界面的非辐射复合, 器件的开路电压得到大幅提升, 最高可达718 mV. 在器件效率方面, 基于溅射法的CZTS太阳电池效率从3.47%提升到5.68%, 约为不退火处理的2倍. 该研究为铜基薄膜太阳电池器件实现高开路电压提供了可靠的工艺窗口. 同时, 有力地说明了退火气氛选择对于CdS质量以及CZTS/CdS异质结能带匹配的重要性, 除了界面互扩散以外, 对薄膜材料组分及其结晶性等均实现了调控.
    Efficient copper based thin film solar cells usually use inorganic n-type semiconductor material CdS as the buffer layer. Therefore, the interface quality and energy band matching between the buffer layer and the absorption layer are crucial to the collection and utilization of carriers. Heat treatment can promote the mutual diffusion of interface elements, the migration of ions in the material, and the change of defect state, and the appropriate temperature will change the Cu-Zn ordering degree in the absorption layer, so as to improve the efficiency of the solar cells. Based on the optimization of CdS basic process, the strategy of annealing CdS/copper-based thin film heterojunction in sulfur atmosphere further improves the quality of CdS thin film, and is applied to copper-based solar cells to regulate the p-n heterojunction energy band gap matching of copper-based thin film cells. The results show that the annealing of CdS thin film in sulfur-containing inert atmosphere can effectively improve the crystal quality of CdS thin film and inhibit the non-radiative recombination loss caused by defect trapping at the interface of CZTS/CdS heterojunction, and the open-circuit voltage of the device can significantly increase to 718 mV. In addition, annealing CZTS/CdS heterojunction in S/Ar atmosphere can effectively improve the p-n heterojunction energy band gap matching, which not only improves the electron transmission, but also reduces the carrier recombination, thus improving the Voc and FF of the device. Besides, the oxygen element in CdS film can be replaced by sulfur element in sulfur atmosphere to improve the quality of CdS film, and thus enhancing the short-wave absorption of solar cell device. Therefore, in terms of device efficiency, the efficiency of CZTS solar cell based on sputtering method increases from 3.47% to 5.68%, which is about twice that of non-annealing treatment. Its device structure is Glass/Mo/CZTS/CdS/i-ZnO/Al:ZnO/Ni/Al, providing a reliable process window for copper based thin film solar cell devices to achieve high open-circuit voltage. Meanwhile, this study strongly demonstrates the importance of annealing atmosphere selection for CdS quality and energy band matching of CZTS/CdS heterojunction. In addition to interface interdiffusion, the composition and crystallinity of thin film material are controlled.
      通信作者: 张毅, yizhang@nankai.edu.cn
    • 基金项目: 国家重点研究发展计划 (批准号: 2018YFB1500200)和国家自然科学-云南联合基金重点项目(批准号: U1902218)资助的课题.
      Corresponding author: Zhang Yi, yizhang@nankai.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1500200) and the National Natural Science-Yunnan Joint Foundation Key Program of China (Grant No. U1902218).
    [1]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovolt. 9 1863Google Scholar

    [2]

    Gong Y, Zhu Q, Li B, Wang S, Duan B, Lou L, Xiang C, Jedlicka E, Giridharagopal R, Zhou Y, Dai Q, Yan W, Chen S, Meng Q, Xin H 2022 Nat. Energy 7 966Google Scholar

    [3]

    Cheng T, Cai C, Huang W, Xu W, Tu L, Lai C 2020 ACS Appl. Mater. Interfaces 12 18157Google Scholar

    [4]

    Islam M A, Hossain M S, Aliyu M M, Chelvanathan P, Huda Q, Karim M R, Sopian K, Amin N 2013 Energy Procedi 33 203Google Scholar

    [5]

    Sivaraman T, Narasimman V, Nagarethinam V S, Balu A R 2015 Prog. Nat. Sci. 25 392Google Scholar

    [6]

    Neuschitzer M, Sanchez Y, López-Marino S, Xie H B, Fairbrother A, Placidi M, Haass S, Izquierdo-Roca V, Perez-Rodriguez A, Saucedo E 2015 Prog. Photovolt. 23 1660Google Scholar

    [7]

    Zhang S, Yu F, Yuan Q, Wang Y, Wei S, Tesfamichael T, Liang B, Wang H 2019 Sol. Energy Mater. and Sol. Cells 200 109892Google Scholar

    [8]

    Martin N M, Platzer-Björkman C, Simonov K, Rensmo H, Törndahl T 2020 Phys. Status Solidi (b) 257 2000308Google Scholar

    [9]

    Yang K J, Son D H, Sung S J, Sim J H, Kim Y I, Park S N, Jeon D H, Kim J, Hwang D K, Jeon C W, Nam D Y, Cheong H, Kang J K, Kim D H 2016 J. Mater. Chem. A 4 10151Google Scholar

    [10]

    Cui X, Sun K, Huang J, Lee C Y, Yan C, Sun H, Zhang Y, Liu F, Hossain M A, Zakaria Y, Wong L H, Green M, Hoex B, Hao X 2018 Chem. Mater. 30 7860Google Scholar

    [11]

    Guo H, Meng R, Wang G, Wang S, Wu L, Li J, Wang Z, Dong J, Hao X, Zhang Y 2022 Energy Environ. Sci. 15 693Google Scholar

    [12]

    Gutiérrez Lazos C D, Rosendo E, Ortega M, Oliva A I, Tapia O, Díaz T, Juárez H, García G, Rubín M 2009 Mater. Sci. Eng. B 165 74Google Scholar

    [13]

    Rizwan Z, Zakaria A, Mohd Ghazali M S, Jafari A, Din F U, Zamiri R 2011 Int J Mol Sci 12 1293Google Scholar

    [14]

    Tajima S, Umehara M, Hasegawa M, Mise T, Itoh T 2017 Prog. Photovolt. 25 14Google Scholar

    [15]

    Yan C, Huang J, Sun K, Johnston S, Zhang Y, Sun H, Pu A, He M, Liu F, Eder K, Yang L, Cairney J M, Ekins-Daukes N J, Hameiri Z, Stride J A, Chen S Y, Green M A, Hao X 2018 Nat. Energy 3 764Google Scholar

    [16]

    Pham N D, Tiong V T, Yao D, Martens W, Guerrero A, Bisquert J, Wang H 2017 Nano Energy 41 476Google Scholar

    [17]

    Diao A, Thiaw B, Boiro M, Mbodji S, Sissoko 2021 J. Mod. Phys. 12 635Google Scholar

    [18]

    Nisika, Kaur K, Kumar M 2020 J. Mater. Chem. A 8 21547Google Scholar

    [19]

    Scragg J J S, Choubrac L, Lafond A, Ericson T, Platzer-Björkman C 2014 Appl. Phys. Lett. 104 041911Google Scholar

    [20]

    Gokmen T, Gunawan O, Todorov T K, Mitzi D B 2013 Appl. Phys. Lett. 103 103506Google Scholar

    [21]

    Scragg J J, Ericson T, Kubart T, Edoff M, Platzer-Björkman C 2011 Chem. Mater. 23 4625Google Scholar

    [22]

    Zhang S, Wu J, Guo H, Sun Y, Zhou Z, Zhang Y 2021 Phys. Status Solidi (a) 218 2100585Google Scholar

  • 图 1  (a)不同沉积时间对CdS透射光谱的影响; (b) 不同温度下CdS的生长速率; (c) CdS的AFM形貌

    Fig. 1.  (a) Influence of different deposition time on CdS transmission spectra; (b) CdS growth rates at different temperatures; (c) AFM topography image of CdS.

    图 2  不同气氛下热处理CZTS/CdS异质结得到的太阳电池的 (a) VOC; (b) JSC; (c) FF; (d) PCE; (e) Rs和(f) Rsh

    Fig. 2.  Statistic photovoltaic performance ((a) VOC; (b) JSC; (c) FF; (d) PCE; (e) RS and (f) RSh) of CZTS/CdS heterojunction treated by heat in different atmospheres.

    图 3  不同气氛下热处理CZTS/CdS异质结后电池性能 (a)开路电压与光强的关系; (b)外量子效率; (c)外量子效率比; (d) 根据外量子效率长波吸收边拟合吸收层禁带宽度曲线

    Fig. 3.  Characteritic of CZTS/CdS heterojunction treated by heat in different atmospheres (a) VOC versus illumination intensity; (b) external quantum efficiency; (c) external quantum efficiency ratio; (d) Eg curves of absorb layer fitted according to EQE of cells.

    图 4  (a)不退火; (b)空气退火和(c)含硫氩气氛退火处理的CZTS/CdS异质结所制备的太阳电池的Raman谱及其多峰拟合

    Fig. 4.  Raman spectra and multi peak fitting of CZTS/CdS heterojunction prepared by (a) no annealing, (b) air annealing, and (c) annealing in sulfur-containing argon atmospheres.

    图 5  (a)不同气氛下热处理CZTS/CdS异质结后CdS表面XPS全谱; (b)—(d) 高分辨S 2p分峰拟合谱; (e) Cd 3d和(f) O 1s的高分辨率谱

    Fig. 5.  Full XPS spectra of CdS surface after heat treatment of CZTS/CdS heterojunction under different atmospheres; (b)–(d) high-solution XPS of S 2p split peak fitting spectra; (e) Cd 3d and (f) O 1s high-solution XPS spectra.

    图 6  CdS薄膜在不同气氛下退火后的透射光谱(插图是拟合CdS禁带宽度的Tauc图)

    Fig. 6.  Transmission spectra of CdS thin films annealed in different atmospheres (the illustration is the Tauc diagram fitting the CdS band gap width).

    图 7  不同气氛退火后的CdS的XRD衍射图

    Fig. 7.  XRD diffraction patterns of CdS after annealing in different atmospheres.

    图 8  薄膜CdS在空气中(a), (b)和含硫气氛中(c), (d)退火后的AFM形貌和KPFM表面势分布; (e)薄膜CdS退火后KPFM表面势统计分布图

    Fig. 8.  AFM morphology and KPFM surface potential distribution after annealing of CdS thin films in air (a), (b) and sulfur-containing atmosphere (c), (d); (e) statistical distribution of KPFM surface potential after annealing of CdS thin films.

    图 9  热处理CZTS/CdS异质结不同温度和时间后的电池性能 (a) Jsc-Voc和(b) PCE-FF统计分布

    Fig. 9.  Cell performance of heat-treated CZTS/CdS heterojunctions after different temperatures and time: (a) Jsc-Voc and (b) PCE-FF statistical distributions.

    表 1  不同退火气氛下最高效CZTS电池的性能参数

    Table 1.  Detailed device performance parameters of the best CZTS in different atmospheres.

    DeviceVOC/mVJSC/(mA·cm–2)FF/%PCE/%Rs/(Ω·cm2)Rsh/(Ω·cm2)nΦJEQE/(mA·cm–2)
    CdS-wo51915.3143.703.4710.61882.6915.55
    CdS-air52613.9843.873.2311.81302.7814.92
    CdS-S/Ar61116.5156.275.685.63181.8815.89
    下载: 导出CSV

    表 2  CZTS/CdS异质结在不同气氛中退火后CdS表面不同价态的硫的含量比和原子比例

    Table 2.  Ratio of sulfur content and atomic ratio of different valence states on the surface of CdS after annealing of CZTS/CdS heterojunction in different atmospheres.

    [S2–]/[S]/%[S0]/[S]/%[S6+]/[S]/%[S]/[Cd][O]/[S][S2–]/[Cd]
    CdS-wo90.0409.960.472.050.43
    CdS-Air84.73015.280.631.270.54
    CdS-S/Ar76.7123.2901.030.080.79
    下载: 导出CSV

    表 3  在0.5 atm的含硫氩气氛中不同温度和时长热处理CZTS/CdS异质结得到的CZTS电池器件特征参数

    Table 3.  Characteristic parameters of CZTS cell devices obtained by heat treatment of CZTS/CdS heterojunction at different temperatures and durations in sulfur-containing argon atmosphere at 0.5 atm.

    Temperature/℃Time/minVoc/mVPCE/%FF/%Jsc/(A·m-2)
    27555741.8338.7082.5
    30056282.2237.6293.9
    32556582.5137.49101.6
    35057003.2638.44121.0
    275306581.7034.4475.1
    300307183.1134.91124.2
    325307183.6737.66135.9
    350306881.9326.05107.9
    下载: 导出CSV
  • [1]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovolt. 9 1863Google Scholar

    [2]

    Gong Y, Zhu Q, Li B, Wang S, Duan B, Lou L, Xiang C, Jedlicka E, Giridharagopal R, Zhou Y, Dai Q, Yan W, Chen S, Meng Q, Xin H 2022 Nat. Energy 7 966Google Scholar

    [3]

    Cheng T, Cai C, Huang W, Xu W, Tu L, Lai C 2020 ACS Appl. Mater. Interfaces 12 18157Google Scholar

    [4]

    Islam M A, Hossain M S, Aliyu M M, Chelvanathan P, Huda Q, Karim M R, Sopian K, Amin N 2013 Energy Procedi 33 203Google Scholar

    [5]

    Sivaraman T, Narasimman V, Nagarethinam V S, Balu A R 2015 Prog. Nat. Sci. 25 392Google Scholar

    [6]

    Neuschitzer M, Sanchez Y, López-Marino S, Xie H B, Fairbrother A, Placidi M, Haass S, Izquierdo-Roca V, Perez-Rodriguez A, Saucedo E 2015 Prog. Photovolt. 23 1660Google Scholar

    [7]

    Zhang S, Yu F, Yuan Q, Wang Y, Wei S, Tesfamichael T, Liang B, Wang H 2019 Sol. Energy Mater. and Sol. Cells 200 109892Google Scholar

    [8]

    Martin N M, Platzer-Björkman C, Simonov K, Rensmo H, Törndahl T 2020 Phys. Status Solidi (b) 257 2000308Google Scholar

    [9]

    Yang K J, Son D H, Sung S J, Sim J H, Kim Y I, Park S N, Jeon D H, Kim J, Hwang D K, Jeon C W, Nam D Y, Cheong H, Kang J K, Kim D H 2016 J. Mater. Chem. A 4 10151Google Scholar

    [10]

    Cui X, Sun K, Huang J, Lee C Y, Yan C, Sun H, Zhang Y, Liu F, Hossain M A, Zakaria Y, Wong L H, Green M, Hoex B, Hao X 2018 Chem. Mater. 30 7860Google Scholar

    [11]

    Guo H, Meng R, Wang G, Wang S, Wu L, Li J, Wang Z, Dong J, Hao X, Zhang Y 2022 Energy Environ. Sci. 15 693Google Scholar

    [12]

    Gutiérrez Lazos C D, Rosendo E, Ortega M, Oliva A I, Tapia O, Díaz T, Juárez H, García G, Rubín M 2009 Mater. Sci. Eng. B 165 74Google Scholar

    [13]

    Rizwan Z, Zakaria A, Mohd Ghazali M S, Jafari A, Din F U, Zamiri R 2011 Int J Mol Sci 12 1293Google Scholar

    [14]

    Tajima S, Umehara M, Hasegawa M, Mise T, Itoh T 2017 Prog. Photovolt. 25 14Google Scholar

    [15]

    Yan C, Huang J, Sun K, Johnston S, Zhang Y, Sun H, Pu A, He M, Liu F, Eder K, Yang L, Cairney J M, Ekins-Daukes N J, Hameiri Z, Stride J A, Chen S Y, Green M A, Hao X 2018 Nat. Energy 3 764Google Scholar

    [16]

    Pham N D, Tiong V T, Yao D, Martens W, Guerrero A, Bisquert J, Wang H 2017 Nano Energy 41 476Google Scholar

    [17]

    Diao A, Thiaw B, Boiro M, Mbodji S, Sissoko 2021 J. Mod. Phys. 12 635Google Scholar

    [18]

    Nisika, Kaur K, Kumar M 2020 J. Mater. Chem. A 8 21547Google Scholar

    [19]

    Scragg J J S, Choubrac L, Lafond A, Ericson T, Platzer-Björkman C 2014 Appl. Phys. Lett. 104 041911Google Scholar

    [20]

    Gokmen T, Gunawan O, Todorov T K, Mitzi D B 2013 Appl. Phys. Lett. 103 103506Google Scholar

    [21]

    Scragg J J, Ericson T, Kubart T, Edoff M, Platzer-Björkman C 2011 Chem. Mater. 23 4625Google Scholar

    [22]

    Zhang S, Wu J, Guo H, Sun Y, Zhou Z, Zhang Y 2021 Phys. Status Solidi (a) 218 2100585Google Scholar

  • [1] 许畅, 郑德旭, 董心睿, 吴飒建, 武明星, 王开, 刘生忠. 钙钛矿基三结叠层太阳电池的研究进展. 物理学报, 2024, 73(24): 248802. doi: 10.7498/aps.73.20241187
    [2] 王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹. 钙钛矿/硅异质结叠层太阳电池: 光学模拟的研究进展. 物理学报, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [3] 张博宇, 周佳凯, 任程超, 苏祥林, 任慧志, 赵颖, 张晓丹, 侯国付. 硅异质结太阳电池中钝化层和发射层的优化设计. 物理学报, 2021, 70(18): 188401. doi: 10.7498/aps.70.20210674
    [4] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [5] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [6] 陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖. 钙钛矿/硅叠层太阳电池中平面a-Si:H/c-Si异质结底电池的钝化优化及性能提高. 物理学报, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [7] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [8] 曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军. 微晶硅锗薄膜作为近红外光吸收层在硅基薄膜太阳电池中的应用. 物理学报, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [9] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [10] 陈培专, 侯国付, 索松, 倪牮, 张建军, 张晓丹, 赵颖. 硅基薄膜太阳电池一维光子晶体背反射器的模拟设计与制备. 物理学报, 2014, 63(12): 128801. doi: 10.7498/aps.63.128801
    [11] 孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔. 更正:连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池[物理学报2014, 63, 018801]. 物理学报, 2014, 63(2): 029901. doi: 10.7498/aps.63.029901
    [12] 孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔. 连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池. 物理学报, 2014, 63(1): 018801. doi: 10.7498/aps.63.018801
    [13] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [14] 赖延清, 匡三双, 刘芳洋, 张治安, 刘军, 李劼, 刘业翔. 电沉积Cu(In, Ga)Se2预置层硫化退火制备Cu(In, Ga)(Se, S)2薄膜及表征. 物理学报, 2010, 59(2): 1196-1201. doi: 10.7498/aps.59.1196
    [15] 张进城, 董作典, 秦雪雪, 郑鹏天, 刘林杰, 郝跃. GaN基异质结缓冲层漏电分析. 物理学报, 2009, 58(3): 1959-1965. doi: 10.7498/aps.58.1959
    [16] 赵 雷, 周春兰, 李海玲, 刁宏伟, 王文静. a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化. 物理学报, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [17] 贺剑雄, 郑家贵, 李 卫, 冯良桓, 蔡 伟, 蔡亚平, 张静全, 黎 兵, 雷 智, 武莉莉, 王文武. CdTe薄膜太阳电池背接触的研究. 物理学报, 2007, 56(9): 5548-5553. doi: 10.7498/aps.56.5548
    [18] 许 颖, 刁宏伟, 张世斌, 励旭东, 曾湘波, 王文静, 廖显伯. 微量掺碳nc-SiC:H薄膜用于p-i-n太阳电池的窗口层. 物理学报, 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [19] 曾广根, 郑家贵, 黎 兵, 雷 智, 武莉莉, 蔡亚平, 李 卫, 张静全, 蔡 伟, 冯良桓. 具有高阻抗本征SnO2过渡层的CdS/CdTe多晶薄膜太阳电池. 物理学报, 2006, 55(9): 4854-4859. doi: 10.7498/aps.55.4854
    [20] 汤定元. 关于硫化镉单晶的生长速率. 物理学报, 1962, 18(4): 207-210. doi: 10.7498/aps.18.207
计量
  • 文章访问数:  4373
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-24
  • 修回日期:  2023-02-24
  • 上网日期:  2023-03-03
  • 刊出日期:  2023-04-20

/

返回文章
返回