搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池

孙凯文 苏正华 韩自力 刘芳洋 赖延清 李劼 刘业翔

引用本文:
Citation:

连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池

孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔

Fabrication of flexible Cu2ZnSnS4 (CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method

Sun Kai-Wen, Su Zheng-Hua, Han Zi-Li, Liu Fang-Yang, Lai Yan-Qing, Li Jie, Liu Ye-Xiang
PDF
导出引用
  • 在柔性钼箔衬底上采用连续离子层吸附反应法(successive ionic layer absorption and reaction)制备ZnS/Cu2SnSx叠层结构的预制层薄膜,预制层薄膜在蒸发硫气氛、 550 ℃ 温度条件下进行退火得到Cu2ZnSnS4吸收层. 分别采用EDS,XRD,Raman,SEM表征吸收层薄膜的成分、物相和表面形貌. 结果表明,退火后薄膜结晶质量良好,表面形貌致密. 用在普通钠钙玻璃上采用相同工艺制备的CZTS薄膜表征薄膜的光学和电学性能,表明退火后薄膜带隙宽度为1.49 eV,在可见光区光吸收系数大于104 cm-1,载流子浓度与电阻率均满足薄膜太阳电池器件对吸收层的要求. 用上述柔性衬底上的吸收层制备Mo foil/CZTS/CdS/i-ZnO/ZnO:Al/Ag结构的薄膜太阳电池得到2.42%的效率,是目前报道柔性CZTS太阳电池最高效率.
    Cu2ZnSnS4 (CZTS) precursor thin films were prepared on a flexible Mo foil substrate via ZnS/Cu2SnSx stacked structure using successive ionic layer absorption and reaction (SILAR) method; the precursor thin films were annealed at 550 ℃ in sulfur atmosphere to obtain CZTS absorber layers. The chemical composition,crystallinity and surface morphology were characterized by EDS, XRD, Raman and SEM, respectively, indicating that the annealed films are highly crystallin and have compact morphology. In order to analyse the optical and electrical properties of the films, same processes were implemented on the soda glasses. Results reveal that the band gaps of the annealed films are 1.49 eV, the absorption coefficients are higher than 104 cm-1, and the carrier concentration as well as the electrical resistivity is suitable for fabrication of thin film solar cells. Flexible solar cells with a structure of Mo foil/CZTS/CdS/i-ZnO/ZnO: Al/Ag were fabricated by the above CZTS absorber layers, which demonstrated an efficiency of, 2.42%, the record efficiency of flexible CZTS solar cells as far as we know.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:51204214)和中央高校基本科研业务费青年助推基金(批准号:2012QNZT022)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51204214) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2012QNZT022).
    [1]

    Zhang L, He Q, Xu C M, Xue Y M, Li C J Sun Y 2008 Chin. Phys. B 17 3138

    [2]

    Xu C M, Sun Y, Li F Y, Zhang L, Xue Y M, He Q, Liu H T 2007 Chin. Phys. 16 788

    [3]

    Li W, Sun Y, Liu W, Li F Y Zhou L 2006 Chin. Phys. 15 878

    [4]

    Chiril A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk Y E, Bilger G, Tiwari A N 2011 Nat. Mater 10 857

    [5]

    Tao C S, Jiang J, Tao M 2011 Sol. Energ. Mat. Sol. C 95 3176

    [6]

    Phipps G, Mikolajczak C, Guckes T 2008 Renewable Energy Focus 9 56

    [7]

    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Progress in Photovoltaics: Research and Applications 21 72

    [8]

    Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B 2013 Adv Energy Mater 3 34

    [9]

    Zhou Z, Wang Y, Xu D, Zhang Y 2010 Sol. Energ. Mat. Sol. C 94 2042

    [10]

    Tian Q, Xu X, Han L, Tang M, Zou R, Chen Z, Yu M, Yang J, Hu J 2012 Cryst. Eng. Comm. 14 3847

    [11]

    Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T 2008 Appl. Phys. Express 1 041201

    [12]

    Chawla V, Clemens B 2012 38th IEEE Photovoltaic Specialists Conference (PVSC) Twxas, USA, June 3–8, 2012 p002990

    [13]

    Zhang K, Liu F Y, Lai Y Q, Li Y, Yan C, Zhang Z A, Li J, Liu Y X 2011 Acta Phys. Sin. 60 790 (in Chinese) [张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔 2011 物理学报 60 790]

    [14]

    Xie D T, Zhao K, Wang L F, Zhu F, Quan S W, Meng T J, Zhang B C, Chen J E 2002 Acta Phys. Sin. 51 1377 (in Chinese) [谢大弢, 赵夔, 王莉芳, 朱凤, 全胜文, 孟铁军, 张保澄, 陈佳洱2002 物理学报 51 1377]

    [15]

    Kishore Kumar Y B, Suresh Babu G, Uday Bhaskar P, Sundara Raja V 2009 Sol Energ. Mat. Sol. C 93 1230

    [16]

    Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384

    [17]

    Cao Y, Denny M S, Caspar J V, Farneth W E, Guo Q, Ionkin A S, Johnson L K, Lu M, Malajovich I, Radu D, Rosenfeld H D, Choudhury K R, Wu W 2012 J. Am. Chem. Soc. 134 15644

    [18]

    Ahmed S, Reuter K B, Gunawan O, Guo L, Romankiw L T, Deligianni H 2012 Adv. Energy Mater 2 253

    [19]

    Tanaka K, Fukui Y, Moritake N, Uchiki H 2011 Sol. Energ Mat. Sol. C 95 838

    [20]

    Li W, Ao J P, He Q, Liu F F, Li F Y, Li C J, Sun Y 2007 Acta. Phys. Sin. 56 5009 (in Chinese) [李 微, 敖建平, 何 青, 刘芳芳, 李凤岩, 李长健, 孙 云 2007 物理学报 56 5009]

    [21]

    Ki W, Hillhouse H W 2011 Adv. Energy Mater 1 732

    [22]

    Chen Q M, Li Z Q, Ni Y, Cheng S Y, Dou X M 2012 Chin. Phys. B 21 038401

    [23]

    Y.F N 1985 Appl. Surf. Sci. 22-23 Part 2 1061

    [24]

    Mali S S, Shinde P S, Betty C A, Bhosale P N, Oh Y W, Patil P S 2012 J. Phys. Chem. Solids 73 735

    [25]

    Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H 2012 Mater Res. Bull 47 302

    [26]

    Mali S S, Patil B M, Betty C A, Bhosale P N, Oh Y W, Jadkar S R, Devan R S, Ma Y R, Patil P S 2012 Electrochim. Acta 66 216

    [27]

    Jimbo K, Kimura R, Kamimura T, Yamada S, Maw W S, Araki H, Oishi K, Katagiri H 2007 Thin Solid Films 515 5997

    [28]

    Katagiri H 2005 Thin Solid Films 480-481 426

    [29]

    Paier J, Asahi R, Nagoya A, Kresse G 2009 Phys. Rev. B 79 115126

    [30]

    Chen S, Gong X G, Walsh A, Su-Huai W 2010 Appl. Phys. Lett. 96 021902

    [31]

    Redinger A, Berg D M, Dale P J, Siebentritt S 2011 J. Am. Chem. Soc. 133 3320

    [32]

    Lai Y Q, Kuang S S, Liu F Y, Zhang Z A, Liu J, Liu Y X 2010 Acta Phys. Sin. 59 1196 (in Chinese) [赖延清, 匡三双, 刘芳洋, 张治安, 刘军, 李劼, 刘业翔 2010 物理学报 59 1196]

    [33]

    Ito K, Nakazawa T 1988 Jpn. J. Appl. Phys. 27 2094

    [34]

    Zhang J, Shao L 2009 Science in China Series E: Technological Sciences 52 269

  • [1]

    Zhang L, He Q, Xu C M, Xue Y M, Li C J Sun Y 2008 Chin. Phys. B 17 3138

    [2]

    Xu C M, Sun Y, Li F Y, Zhang L, Xue Y M, He Q, Liu H T 2007 Chin. Phys. 16 788

    [3]

    Li W, Sun Y, Liu W, Li F Y Zhou L 2006 Chin. Phys. 15 878

    [4]

    Chiril A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk Y E, Bilger G, Tiwari A N 2011 Nat. Mater 10 857

    [5]

    Tao C S, Jiang J, Tao M 2011 Sol. Energ. Mat. Sol. C 95 3176

    [6]

    Phipps G, Mikolajczak C, Guckes T 2008 Renewable Energy Focus 9 56

    [7]

    Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S 2013 Progress in Photovoltaics: Research and Applications 21 72

    [8]

    Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B 2013 Adv Energy Mater 3 34

    [9]

    Zhou Z, Wang Y, Xu D, Zhang Y 2010 Sol. Energ. Mat. Sol. C 94 2042

    [10]

    Tian Q, Xu X, Han L, Tang M, Zou R, Chen Z, Yu M, Yang J, Hu J 2012 Cryst. Eng. Comm. 14 3847

    [11]

    Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T 2008 Appl. Phys. Express 1 041201

    [12]

    Chawla V, Clemens B 2012 38th IEEE Photovoltaic Specialists Conference (PVSC) Twxas, USA, June 3–8, 2012 p002990

    [13]

    Zhang K, Liu F Y, Lai Y Q, Li Y, Yan C, Zhang Z A, Li J, Liu Y X 2011 Acta Phys. Sin. 60 790 (in Chinese) [张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔 2011 物理学报 60 790]

    [14]

    Xie D T, Zhao K, Wang L F, Zhu F, Quan S W, Meng T J, Zhang B C, Chen J E 2002 Acta Phys. Sin. 51 1377 (in Chinese) [谢大弢, 赵夔, 王莉芳, 朱凤, 全胜文, 孟铁军, 张保澄, 陈佳洱2002 物理学报 51 1377]

    [15]

    Kishore Kumar Y B, Suresh Babu G, Uday Bhaskar P, Sundara Raja V 2009 Sol Energ. Mat. Sol. C 93 1230

    [16]

    Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R 2010 J. Am. Chem. Soc. 132 17384

    [17]

    Cao Y, Denny M S, Caspar J V, Farneth W E, Guo Q, Ionkin A S, Johnson L K, Lu M, Malajovich I, Radu D, Rosenfeld H D, Choudhury K R, Wu W 2012 J. Am. Chem. Soc. 134 15644

    [18]

    Ahmed S, Reuter K B, Gunawan O, Guo L, Romankiw L T, Deligianni H 2012 Adv. Energy Mater 2 253

    [19]

    Tanaka K, Fukui Y, Moritake N, Uchiki H 2011 Sol. Energ Mat. Sol. C 95 838

    [20]

    Li W, Ao J P, He Q, Liu F F, Li F Y, Li C J, Sun Y 2007 Acta. Phys. Sin. 56 5009 (in Chinese) [李 微, 敖建平, 何 青, 刘芳芳, 李凤岩, 李长健, 孙 云 2007 物理学报 56 5009]

    [21]

    Ki W, Hillhouse H W 2011 Adv. Energy Mater 1 732

    [22]

    Chen Q M, Li Z Q, Ni Y, Cheng S Y, Dou X M 2012 Chin. Phys. B 21 038401

    [23]

    Y.F N 1985 Appl. Surf. Sci. 22-23 Part 2 1061

    [24]

    Mali S S, Shinde P S, Betty C A, Bhosale P N, Oh Y W, Patil P S 2012 J. Phys. Chem. Solids 73 735

    [25]

    Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H 2012 Mater Res. Bull 47 302

    [26]

    Mali S S, Patil B M, Betty C A, Bhosale P N, Oh Y W, Jadkar S R, Devan R S, Ma Y R, Patil P S 2012 Electrochim. Acta 66 216

    [27]

    Jimbo K, Kimura R, Kamimura T, Yamada S, Maw W S, Araki H, Oishi K, Katagiri H 2007 Thin Solid Films 515 5997

    [28]

    Katagiri H 2005 Thin Solid Films 480-481 426

    [29]

    Paier J, Asahi R, Nagoya A, Kresse G 2009 Phys. Rev. B 79 115126

    [30]

    Chen S, Gong X G, Walsh A, Su-Huai W 2010 Appl. Phys. Lett. 96 021902

    [31]

    Redinger A, Berg D M, Dale P J, Siebentritt S 2011 J. Am. Chem. Soc. 133 3320

    [32]

    Lai Y Q, Kuang S S, Liu F Y, Zhang Z A, Liu J, Liu Y X 2010 Acta Phys. Sin. 59 1196 (in Chinese) [赖延清, 匡三双, 刘芳洋, 张治安, 刘军, 李劼, 刘业翔 2010 物理学报 59 1196]

    [33]

    Ito K, Nakazawa T 1988 Jpn. J. Appl. Phys. 27 2094

    [34]

    Zhang J, Shao L 2009 Science in China Series E: Technological Sciences 52 269

  • [1] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化. 物理学报, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [2] 肖友鹏, 王怀平, 李刚龙. Graphene/Ag2ZnSnSe4诱导p-n结薄膜太阳电池数值模拟. 物理学报, 2021, 70(1): 018801. doi: 10.7498/aps.70.20201194
    [3] 曹宇, 王长刚, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211525
    [4] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [5] 刘辉城, 许佳雄, 林俊辉. Si衬底Cu2ZnSnS4太阳能电池的数值分析. 物理学报, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [6] 敬婧, 李致朋, 卢伟胜, 王宏宇, 杨祖安, 杨毅, 尹祺圣, 杨馥菱, 沈晓明, 曾建民, 詹锋. 一种具有减反射性能的Cu2ZnSnS4太阳能电池透明导电氧化物薄膜. 物理学报, 2020, 69(23): 237801. doi: 10.7498/aps.69.20200897
    [7] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [8] 刘芳芳, 孙云, 何青. Ga梯度分布对Cu(In,Ga)Se2薄膜及太阳电池的影响. 物理学报, 2014, 63(4): 047201. doi: 10.7498/aps.63.047201
    [9] 刘芳芳, 何青, 周志强, 孙云. Cu元素对Cu(In, Ga)Se2薄膜及太阳电池的影响. 物理学报, 2014, 63(6): 067203. doi: 10.7498/aps.63.067203
    [10] 孙凯文, 苏正华, 韩自力, 刘芳洋, 赖延清, 李劼, 刘业翔. 更正:连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池[物理学报2014, 63, 018801]. 物理学报, 2014, 63(2): 029901. doi: 10.7498/aps.63.029901
    [11] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [12] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [13] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究. 物理学报, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [14] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [15] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [16] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究. 物理学报, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [17] 许 颖, 刁宏伟, 张世斌, 励旭东, 曾湘波, 王文静, 廖显伯. 微量掺碳nc-SiC:H薄膜用于p-i-n太阳电池的窗口层. 物理学报, 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [18] 曾广根, 郑家贵, 黎 兵, 雷 智, 武莉莉, 蔡亚平, 李 卫, 张静全, 蔡 伟, 冯良桓. 具有高阻抗本征SnO2过渡层的CdS/CdTe多晶薄膜太阳电池. 物理学报, 2006, 55(9): 4854-4859. doi: 10.7498/aps.55.4854
    [19] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] 陈鸣波, 崔容强, 王亮兴, 张忠卫, 陆剑峰, 池卫英. p-n 型GaInP2/GaAs叠层太阳电池研究. 物理学报, 2004, 53(11): 3632-3636. doi: 10.7498/aps.53.3632
计量
  • 文章访问数:  3274
  • PDF下载量:  1268
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-18
  • 修回日期:  2013-09-21
  • 刊出日期:  2014-01-05

连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池

  • 1. 中南大学冶金与环境学院, 长沙 410083;
  • 2. 新南威尔士大学光伏与可再生能源工程学院, 悉尼 2052;
  • 3. 深圳高性能电池材料与器件工程研究中心, 深圳 518057
    基金项目: 国家自然科学基金青年科学基金(批准号:51204214)和中央高校基本科研业务费青年助推基金(批准号:2012QNZT022)资助的课题.

摘要: 在柔性钼箔衬底上采用连续离子层吸附反应法(successive ionic layer absorption and reaction)制备ZnS/Cu2SnSx叠层结构的预制层薄膜,预制层薄膜在蒸发硫气氛、 550 ℃ 温度条件下进行退火得到Cu2ZnSnS4吸收层. 分别采用EDS,XRD,Raman,SEM表征吸收层薄膜的成分、物相和表面形貌. 结果表明,退火后薄膜结晶质量良好,表面形貌致密. 用在普通钠钙玻璃上采用相同工艺制备的CZTS薄膜表征薄膜的光学和电学性能,表明退火后薄膜带隙宽度为1.49 eV,在可见光区光吸收系数大于104 cm-1,载流子浓度与电阻率均满足薄膜太阳电池器件对吸收层的要求. 用上述柔性衬底上的吸收层制备Mo foil/CZTS/CdS/i-ZnO/ZnO:Al/Ag结构的薄膜太阳电池得到2.42%的效率,是目前报道柔性CZTS太阳电池最高效率.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回