搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱

任壮 成龙 谢尔盖·固瑞特斯基 那泽亚·柳博奇科 李江涛 尚加敏 谢尔盖·巴里洛 武安华 亚历山大·卡拉什尼科娃 马宗伟 周春 盛志高

引用本文:
Citation:

Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱

任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高

Terahertz spectroscopy study of doping and magnetic field induced effects on spin reorientation in Ho1–xYxFeO3 single crystals

Ren Zhuang, Cheng Long, Sergei Guretskii, Nadzeya Liubochko, Li Jiang-Tao, Shang Jia-Min, Sergei Barilo, Wu An-Hua, Alexandra Kalashnikova, Ma Zong-Wei, Zhou Chun, Sheng Zhi-Gao
PDF
HTML
导出引用
  • 利用自研的磁场下太赫兹时域光谱(terahertz time-domain spectroscopy, THz-TDS), 系统研究了磁场与非磁性Y3+离子掺杂对HoFeO3单晶中自旋态以及自旋重取向的影响. 结果表明Y3+掺杂可以在不改变自旋重取向类型情况下, 有效降低自旋重取向温区, 而且还能降低Ho1–xYxFeO3单晶中低温区准铁磁模式(q-FM, quasi-ferromagnetic mode)自旋共振频率以及提升高温区的准反铁磁模式(q-AFM, quasi-antiferromagnetic mode)自旋共振频率. 在沿(110)方向施加外加磁场( H DC)的情况下, 一方面, 发现磁场不仅能有效调控Ho1–xYxFeO3单晶中的q-FM共振频率, 而且还能诱导出自旋重取向; 另一方面, 发现温度越接近自旋重取向温区时, 磁诱导自旋重取向的发生越容易, 而且磁诱导效应的临界磁场强度随Y3+离子掺杂浓度而增加. 研究表明, THz光谱数据可以用于检测HoFeO3中Y3+离子的掺杂浓度, 而且Y3+掺杂可以使HoFeO3晶体中的自旋态更加稳定, 不容易受外界磁场的影响. 这一自旋重取向的掺杂效应、磁控效应的研究将有助于理解稀土正铁氧体中的自旋交换作用及其外场调控机制.
    In this paper, the effects of magnetic field and nonmagnetic Y3+ doping on spin state and spin reorientation in HoFeO3 single crystal are systematically studied by the self-developed terahertz time-domain spectroscopy (THz-TDS) under magnetic field. By doping nonmagnetic Y3+, we find that the spin reorientation temperature range decreases. Meanwhile, we also find the type of spin reorientation of HoFeO3 does not change with Y3+ doping, indicating that the Y3+ doping can exchange the interaction energy of Ho3+-Fe3+ without introducing any new magnetic structure. Moreover, the resonance frequency of quasi-ferromagnetic mode (q-FM) decreases with temperature increasing in the low temperature range, while the resonance frequency of quasi-antiferromagnetic mode (q-AFM) increases with temperature increasing in the high temperature range in Ho1–xYxFeO3 single crystals. With the external magnetic field ( H DC) applied along the (110) axis, on the one hand the magnetic field can not only tune the resonant frequency of q-FM but also induce the spin reorientation in Ho1–xYxFeO3 single crystals, and on the other hand this magnetic field induced spin reorientation phenomenon can happen more easily if the temperature approaches to the intrinsic spin reorientation temperature range of the single crystals. Besides, the critical magnetic field induced spin reorientation increases with the doping of Y3+ increasing. Our research shows that THz spectroscopy data can be used to detect the doping concentration of Y3+ ions in HoFeO3; in addition, Y3+ doping can make the spin state in HoFeO3 crystal more stable and not easily affected by external magnetic fields. We anticipate that the role of doping and magnetic field in spin reorientation transition will trigger great interest in understanding the mechanism of the spin exchange interaction and the mechanism of external field tuning effect in the vast family of rare earth orthoferrites.
      通信作者: 盛志高, zhigaosheng@hmfl.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0401803, 2017YFA0303603)、中国科学院前沿科学重点研究项目(批准号: QYZDB-SSW-SLH011)、国家自然科学基金(批准号: 11574316, 51872309, 61805256, 11904367, U1832106, 52011530018)、中国科学院俄乌白特别交流计划、上海市科委科技基金(批准号: 19520710900)和白俄罗斯-中国研究框架中的白俄罗斯基础研究基金(批准号: F20CN-021)资助的课题
      Corresponding author: Sheng Zhi-Gao, zhigaosheng@hmfl.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0401803, 2017YFA0303603), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH011), the National Natural Science Foundation of China (Grant Nos. 11574316, 51872309, 61805256, 11904367, U1832106, 52011530018), the Special Exchange Program for Russia-Ukraine-Belarus, Chinese Academy of Sciences, the Shanghai Committee of Science and Technology, China (Grant No. 19520710900), and the Basic Research Funds of Belarus in Frame of Belarus-China Research (Grant No. F20CN-021)
    [1]

    Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V, Rasing T 2004 Nature 429 850Google Scholar

    [2]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655Google Scholar

    [3]

    Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A, Rasing T 2009 Nat. Phys. 5 727Google Scholar

    [4]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [5]

    武安华, 王博, 赵向阳, 满沛文, 谢涛, 徐晓东, 苏良碧 2017 中国科学: 技术科学 47 1177Google Scholar

    Wu A H, Wang B, Zhao X Y, Man P W, Xie T, Xu X D, Su L B 2017 Sci. Sin. Technol. 47 1177Google Scholar

    [6]

    蒋国超, 申慧, 徐家跃, 武安华 2020 人工晶体学报 49 990

    Jiang G C, Shen H, Xu J Y, Wu A H 2020 J. Synth. Cryst. 49 990

    [7]

    覃莹, 陈湘明 2013 物理学进展 33 353

    Qin Y, Chen X M 2013 Prog. Phys. 33 353

    [8]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [9]

    Zhao W Y, Cao S X, Huang R X, Cao Y M, Xu K, Kang B J, Zhang J C, Ren W 2015 Phys. Rev. B 91 104425Google Scholar

    [10]

    Wu H L, Cao S X, Liu M, Cao Y M, Kang B J, Zhang J C, Ren W 2014 Phys. Rev. B 90 144415Google Scholar

    [11]

    Wang B, Zhao X Y, Wu A H, Cao S X, Xu J, Kalashnikova A M, Pisarev R V 2015 J. Magn. Magn. Mater. 379 192Google Scholar

    [12]

    Wu A H, Wang B, Zhao X Y, Xie T, Man P W, Su L B, Kalashnikova A M, Pisarev R V 2017 J. Magn. Magn. Mater. 426 721Google Scholar

    [13]

    Yuan N, Li R B, Yu Y S, Feng Z J, Kang B J, Zhuo S Y, Ge J Y, Zhang J C, Cao S X 2019 Front. Phys. 14 13502Google Scholar

    [14]

    Yamaguchi K, Kurihara T, Minami Y, Nakajima M, Suemoto T 2013 Phys. Rev. Lett. 110 137204Google Scholar

    [15]

    Jiang J J, Jin Z M, Song G B, Lin X, Ma G H, Cao S X 2013 Appl. Phys. Lett. 103 062403Google Scholar

    [16]

    Zeng X X, Fu X J, Wang D Y, Xi X Q, Zhou J, Li B 2015 Opt. Express 23 31956Google Scholar

    [17]

    袁宁, 曹世勋 2019 自然杂志 41 0253

    Yuan N, Cao S X 2019 Chin. J. Nat. 41 0253

    [18]

    White R L 1969 J. Appl. Phys. 40 1061Google Scholar

    [19]

    Suemoto T, Nakamura K, Kurihara T, Watanabe H 2015 Appl. Phys. Lett. 107 042404Google Scholar

    [20]

    Balbashov A M, Kozlov G V, Lebedev S P, Mukhin A A, Pronin A Y, Prokhorov A S 1989 Sov. Phys. JETP 68 629

    [21]

    刘明, 曹世勋, 袁淑娟, 康保娟, 鲁波, 张金仓 2013 物理学报 62 147601Google Scholar

    Liu M, Cao S X, Yuan S J, Kang B J, Lu B, Zhang J C 2013 Acta Phys. Sin. 62 147601Google Scholar

    [22]

    Afanasiev D, Ivanov B A, Kirilyuk A, Rasing T, Pisarev R V, Kimel A V 2016 Phys. Rev. Lett. 116 097401Google Scholar

    [23]

    Amelin K, Nagel U, Fishman R S, Yoshida Y, Sim H, Park K, Park J G, Room T 2018 Phys. Rev. B 98 174417Google Scholar

    [24]

    Liu X M, Jin Z M, Zhang S N, Zhang K L, Zhao W Y, Xu K, Lin X, Cheng Z X, Cao S X, Ma G H 2018 J. Phys. D: Appl. Phys. 51 024001Google Scholar

    [25]

    Li X W, Bamba M, Yuan N, Zhang Q, Zhao Y G, Xiang M L, Xu K, Jin Z M, Ren W, Ma G H, Cao S X, Turchinovich D, Kono J 2018 Science 361 794Google Scholar

    [26]

    Wu A H, Zhao X Y, Man P W, Su L B, Kalashnikova A M, Pisarev R V 2018 J. Cryst. Growth 486 169Google Scholar

    [27]

    Guo J J, Cheng L, Ren Z, Zhang W J, Lin X, Jin Z M, Cao S X, Sheng Z G, Ma G H 2020 J. Phys. Condens. Matter 32 185401Google Scholar

    [28]

    Jiang J J, Song G B, Wang D Y, Jin Z M, Tian Z, Lin X, Han J G, Ma G H, Cao S X, Cheng Z X 2016 J. Phys. Condens. Matter 28 116002Google Scholar

    [29]

    Lin X, Jiang J J, Jin Z M, Wang D Y, Tian Z, Han J G, Cheng Z X, Ma G H 2015 Appl. Phys. Lett. 106 092403Google Scholar

    [30]

    Nikitin S E, Wu L S, Sefat A S, Shaykhutdinov K A, Lu Z, Meng S, Pomjakushina E V, Conder K, Ehlers G, Lumsden M D, Kolesnikov A I, Barilo S, Guretskii S A, Inosov D S, Podlesnyak A 2018 Phys. Rev. B 98 064424Google Scholar

    [31]

    Barilo S N, Ges A P, Guretskii S A, Zhigunov D I, Ignatenko A A, Luginets A M, Shapovalova E F 1991 J. Cryst. Growth 108 309Google Scholar

    [32]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mahrlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nat. Photonics 5 31Google Scholar

    [33]

    Yamaguchi K, Nakajima M, Suemoto T 2010 Phys. Rev. Lett. 105 237201Google Scholar

    [34]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [35]

    Grishunin K, Huisman T, Li G Q, Mishina E, Rasing T, Kimel A V, Zhang K L, Jin Z M, Cao S X, Ren W, Ma G H, Mikhaylovskiy R V 2018 ACS Photonics 5 1375Google Scholar

    [36]

    Afanasiev D, Ivanov B A, Pisarev R V, Kirilyuk A, Rasing T, Kimel A V 2017 J. Phys. Condens. Matter 29 224003Google Scholar

  • 图 1  (a)−(c) 不同温度下(110)取向的HoFeO3, Ho0.8Y0.2FeO3和Ho0.6Y0.4FeO3单晶的THz透射谱, 入射的太赫兹磁场分量(HTHz)平行于晶体的c轴, 图中红色和蓝色虚线分别帮助识别准铁磁模式(q-FM)共振峰和准反铁磁模式(q-AFM)共振峰; (d)−(f) 不同Y3+掺杂浓度单晶中的自旋波共振吸收谱随温度的关系. 图中的红色和蓝色的虚线分别代表低温下q-FM共振峰和高温下q-AFM共振峰随温度的变化

    Fig. 1.  (a)−(c) THz transmission spectra of the (110) HoFeO3, Ho0.8Y0.2FeO3, and Ho0.6Y0.4FeO3 single crystals measured at different temperatures, the incident THz magnetic component (HTHz) is aligned along c-axis of the crystal. The dashed red and blue lines are guides to the eye for identifying the quasi-ferromagnetic mode (q-FM) and quasi-antiferromagnetic mode (q-AFM) resonant peaks, respectively; (d)−(f) temperature dependence of THz spin wave resonance absorption spectra of single crystals with different Y3+ doping levels. The red dotted lines in the figures represent q-FM resonant absorption peaks change with temperature at low temperature, and the blue dotted lines represent q-AFM resonant absorption peaks change with temperature at high temperature.

    图 2  Ho1–xYxFeO3中q-AFM和q-FM共振频率随温度的变化关系, 圆圈、三角和正方形标记分别代表Y3+离子掺杂浓度为0, 0.2和0.4的(110)取向的单晶中的共振频率

    Fig. 2.  The temperature dependence of q-AFM and q-FM resonant frequencies in Ho1–xYxFeO3. Circle, triangle and square markers show resonant frequencies in single crystals with Y3+ dopant concentration of 0, 0.2 and 0.4.

    图 3  (a)−(l) Ho1–xYxFeO3单晶中在不同温度下随磁场变化的自旋波共振吸收谱, 入射的太赫兹磁场分量(HTHz)平行于晶体的c轴, 外加磁场HDC沿晶体的[110]方向, 蓝色和红色的虚线分别表示q-AFM共振峰和q-FM共振峰随磁场的变化

    Fig. 3.  (a)−(l) Magnetic field dependence of THz spin wave resonance absorption spectra of Ho1–xYxFeO3 single crystals measured at different temperatures. The incident THz magnetic component (HTHz) is aligned along c-axis of crystals, and the external magnetic field HDC is applied along [110] axis of crystals. The blue and red dotted lines are q-AFM and q-FM resonant absorption peaks change with the applied magnetic field, respectively.

  • [1]

    Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V, Rasing T 2004 Nature 429 850Google Scholar

    [2]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655Google Scholar

    [3]

    Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A, Rasing T 2009 Nat. Phys. 5 727Google Scholar

    [4]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [5]

    武安华, 王博, 赵向阳, 满沛文, 谢涛, 徐晓东, 苏良碧 2017 中国科学: 技术科学 47 1177Google Scholar

    Wu A H, Wang B, Zhao X Y, Man P W, Xie T, Xu X D, Su L B 2017 Sci. Sin. Technol. 47 1177Google Scholar

    [6]

    蒋国超, 申慧, 徐家跃, 武安华 2020 人工晶体学报 49 990

    Jiang G C, Shen H, Xu J Y, Wu A H 2020 J. Synth. Cryst. 49 990

    [7]

    覃莹, 陈湘明 2013 物理学进展 33 353

    Qin Y, Chen X M 2013 Prog. Phys. 33 353

    [8]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [9]

    Zhao W Y, Cao S X, Huang R X, Cao Y M, Xu K, Kang B J, Zhang J C, Ren W 2015 Phys. Rev. B 91 104425Google Scholar

    [10]

    Wu H L, Cao S X, Liu M, Cao Y M, Kang B J, Zhang J C, Ren W 2014 Phys. Rev. B 90 144415Google Scholar

    [11]

    Wang B, Zhao X Y, Wu A H, Cao S X, Xu J, Kalashnikova A M, Pisarev R V 2015 J. Magn. Magn. Mater. 379 192Google Scholar

    [12]

    Wu A H, Wang B, Zhao X Y, Xie T, Man P W, Su L B, Kalashnikova A M, Pisarev R V 2017 J. Magn. Magn. Mater. 426 721Google Scholar

    [13]

    Yuan N, Li R B, Yu Y S, Feng Z J, Kang B J, Zhuo S Y, Ge J Y, Zhang J C, Cao S X 2019 Front. Phys. 14 13502Google Scholar

    [14]

    Yamaguchi K, Kurihara T, Minami Y, Nakajima M, Suemoto T 2013 Phys. Rev. Lett. 110 137204Google Scholar

    [15]

    Jiang J J, Jin Z M, Song G B, Lin X, Ma G H, Cao S X 2013 Appl. Phys. Lett. 103 062403Google Scholar

    [16]

    Zeng X X, Fu X J, Wang D Y, Xi X Q, Zhou J, Li B 2015 Opt. Express 23 31956Google Scholar

    [17]

    袁宁, 曹世勋 2019 自然杂志 41 0253

    Yuan N, Cao S X 2019 Chin. J. Nat. 41 0253

    [18]

    White R L 1969 J. Appl. Phys. 40 1061Google Scholar

    [19]

    Suemoto T, Nakamura K, Kurihara T, Watanabe H 2015 Appl. Phys. Lett. 107 042404Google Scholar

    [20]

    Balbashov A M, Kozlov G V, Lebedev S P, Mukhin A A, Pronin A Y, Prokhorov A S 1989 Sov. Phys. JETP 68 629

    [21]

    刘明, 曹世勋, 袁淑娟, 康保娟, 鲁波, 张金仓 2013 物理学报 62 147601Google Scholar

    Liu M, Cao S X, Yuan S J, Kang B J, Lu B, Zhang J C 2013 Acta Phys. Sin. 62 147601Google Scholar

    [22]

    Afanasiev D, Ivanov B A, Kirilyuk A, Rasing T, Pisarev R V, Kimel A V 2016 Phys. Rev. Lett. 116 097401Google Scholar

    [23]

    Amelin K, Nagel U, Fishman R S, Yoshida Y, Sim H, Park K, Park J G, Room T 2018 Phys. Rev. B 98 174417Google Scholar

    [24]

    Liu X M, Jin Z M, Zhang S N, Zhang K L, Zhao W Y, Xu K, Lin X, Cheng Z X, Cao S X, Ma G H 2018 J. Phys. D: Appl. Phys. 51 024001Google Scholar

    [25]

    Li X W, Bamba M, Yuan N, Zhang Q, Zhao Y G, Xiang M L, Xu K, Jin Z M, Ren W, Ma G H, Cao S X, Turchinovich D, Kono J 2018 Science 361 794Google Scholar

    [26]

    Wu A H, Zhao X Y, Man P W, Su L B, Kalashnikova A M, Pisarev R V 2018 J. Cryst. Growth 486 169Google Scholar

    [27]

    Guo J J, Cheng L, Ren Z, Zhang W J, Lin X, Jin Z M, Cao S X, Sheng Z G, Ma G H 2020 J. Phys. Condens. Matter 32 185401Google Scholar

    [28]

    Jiang J J, Song G B, Wang D Y, Jin Z M, Tian Z, Lin X, Han J G, Ma G H, Cao S X, Cheng Z X 2016 J. Phys. Condens. Matter 28 116002Google Scholar

    [29]

    Lin X, Jiang J J, Jin Z M, Wang D Y, Tian Z, Han J G, Cheng Z X, Ma G H 2015 Appl. Phys. Lett. 106 092403Google Scholar

    [30]

    Nikitin S E, Wu L S, Sefat A S, Shaykhutdinov K A, Lu Z, Meng S, Pomjakushina E V, Conder K, Ehlers G, Lumsden M D, Kolesnikov A I, Barilo S, Guretskii S A, Inosov D S, Podlesnyak A 2018 Phys. Rev. B 98 064424Google Scholar

    [31]

    Barilo S N, Ges A P, Guretskii S A, Zhigunov D I, Ignatenko A A, Luginets A M, Shapovalova E F 1991 J. Cryst. Growth 108 309Google Scholar

    [32]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mahrlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nat. Photonics 5 31Google Scholar

    [33]

    Yamaguchi K, Nakajima M, Suemoto T 2010 Phys. Rev. Lett. 105 237201Google Scholar

    [34]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [35]

    Grishunin K, Huisman T, Li G Q, Mishina E, Rasing T, Kimel A V, Zhang K L, Jin Z M, Cao S X, Ren W, Ma G H, Mikhaylovskiy R V 2018 ACS Photonics 5 1375Google Scholar

    [36]

    Afanasiev D, Ivanov B A, Pisarev R V, Kirilyuk A, Rasing T, Kimel A V 2017 J. Phys. Condens. Matter 29 224003Google Scholar

  • [1] 张颖, 李卓霖, 沈保根. 磁畴壁拓扑结构研究进展. 物理学报, 2024, 73(1): 017504. doi: 10.7498/aps.73.20231612
    [2] 王宁, 黄峰, 陈盈, 朱国锋, 苏浩斌, 郭翠霞, 王向峰. 磁场诱导的TmFeO3单晶自旋重取向. 物理学报, 2024, 73(1): 017801. doi: 10.7498/aps.73.20231322
    [3] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性. 物理学报, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [4] 方雨青, 金钻明, 陈海洋, 阮舜逸, 李炬赓, 曹世勋, 彭滟, 马国宏, 朱亦鸣. 高通量制备的SmxPr1–xFeO3晶体中反铁磁自旋模式和晶体场跃迁的太赫兹光谱. 物理学报, 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [5] 金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨. 稀土正铁氧体中THz自旋波的相干调控与强耦合研究进展. 物理学报, 2019, 68(16): 167501. doi: 10.7498/aps.68.20190706
    [6] 孟增睿, 张伟斌, 杜宇, 尚丽平, 邓琥. FOX-7转晶行为的太赫兹光谱及理论计算研究. 物理学报, 2015, 64(7): 073302. doi: 10.7498/aps.64.073302
    [7] 杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广. L-天冬酰胺及其一水合物的太赫兹光谱研究. 物理学报, 2014, 63(13): 133203. doi: 10.7498/aps.63.133203
    [8] 刘明, 曹世勋, 袁淑娟, 康保娟, 鲁波, 张金仓. Pr掺杂DyFeO3体系的自旋重取向相变、晶格畸变与Raman光谱研究. 物理学报, 2013, 62(14): 147601. doi: 10.7498/aps.62.147601
    [9] 张存喜, 王瑞, 孔令民. 太赫兹场辅助的单量子阱自旋共振输运. 物理学报, 2010, 59(7): 4980-4984. doi: 10.7498/aps.59.4980
    [10] 郑小平, 张佩峰, 李发伸, 郝远. Tb0.3Dy0.6Pr0.1(Fe1-xAlx)1.95合金的磁性、磁致伸缩和穆斯堡尔谱研究. 物理学报, 2009, 58(8): 5768-5772. doi: 10.7498/aps.58.5768
    [11] 马晓菁, 赵红卫, 代 斌, 刘桂锋. 次黄嘌呤及其核苷的THz光谱. 物理学报, 2008, 57(6): 3429-3434. doi: 10.7498/aps.57.3429
    [12] 郑小平, 张佩峰, 范多旺, 李发伸, 郝 远. Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95合金的磁致伸缩、自旋重取向和穆斯堡尔谱研究. 物理学报, 2007, 56(1): 535-540. doi: 10.7498/aps.56.535
    [13] 李 宏, 王炜路, 公丕锋. 单量子阱的自旋电流. 物理学报, 2007, 56(4): 2405-2408. doi: 10.7498/aps.56.2405
    [14] 王文全, 徐世峰, 徐钦英, 张文梁, 陈东风. (Nd1-xGdx)3Fe27.31Ti1.69化合物的结构和磁性. 物理学报, 2006, 55(7): 3531-3535. doi: 10.7498/aps.55.3531
    [15] 郑小平, 张佩峰, 范多旺, 李发伸, 郝 远. Tb0.3Dy0.7(Fe0.9T0.1)1.95合金的结构、自旋重取向和穆斯堡尔谱. 物理学报, 2006, 55(2): 879-883. doi: 10.7498/aps.55.879
    [16] 郑小平, 张佩峰, 范多旺, 李发伸, 成昭华, 沈保根. Tb0.3Dy0.7(Fe1-xAlx)1.95合金的自旋重取向和穆斯堡尔. 物理学报, 2005, 54(2): 944-948. doi: 10.7498/aps.54.944
    [17] 郭光华, 张海贝. 化合物HoMn6Sn6的磁晶各向异性及自旋重取向相变研究. 物理学报, 2005, 54(12): 5879-5883. doi: 10.7498/aps.54.5879
    [18] 王文全, 闫 羽, 王向群, 王学凤, 金汉民. (Nd1-xErx)3Fe273Ti17化合物的结构与磁性. 物理学报, 2003, 52(3): 641-646. doi: 10.7498/aps.52.641
    [19] 韩志全. 微波铁氧体损耗的晶粒表层自旋波共振模型. 物理学报, 1999, 48(13): 291-297. doi: 10.7498/aps.48.291
    [20] 唐坤发, 胡嘉桢. 一种推广伊辛自旋模型的实空间重正化群理论. 物理学报, 1986, 35(8): 1048-1054. doi: 10.7498/aps.35.1048
计量
  • 文章访问数:  6876
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-11
  • 修回日期:  2020-09-24
  • 上网日期:  2020-10-14
  • 刊出日期:  2020-10-20

/

返回文章
返回