搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频率色散表面阻抗对真空电子太赫兹源的影响

任泽平 陈再高 陈剑楠 乔海亮

引用本文:
Citation:

频率色散表面阻抗对真空电子太赫兹源的影响

任泽平, 陈再高, 陈剑楠, 乔海亮

Effects of frequency-dependent surface impedance on the vacuum electronic terahertz sources

Ren Ze-Ping, Chen Zai-Gao, Chen Jian-Nan, Qiao Hai-Liang
PDF
HTML
导出引用
  • 为了研究欧姆损耗对高频真空电子器件工作特性的影响, 首先推导频率色散表面阻抗边界在三维共形粒子模拟软件UNIPIC-3D中的实现原理, 并通过对有耗边界矩形谐振腔和圆波导进行模拟验证了该阻抗边界算法的正确性. 采用有耗共形UNIPIC-3D模拟相对论太赫兹表面波振荡器和低电压平板格栅返波振荡器. 模拟结果表明, 对于表面波振荡器和平板BWO这种电磁场集中在金属慢波结构附近的太赫兹真空电子器件, 欧姆损耗会对器件的运行带来极大影响, 对于采用铜材料的器件, 输出功率会下降一半左右, 器件起振时间出现延迟, 但器件工作频率几乎不变. 为了提高相对论太赫兹表面波振荡器的效率, 在二极管和慢波结构之间增加了反射腔, 模拟结果表明, 在考虑器件表面损耗的条件下, 器件的工作频率保持不变, 输出功率由41 MW提高到60 MW.
    When the working frequency of vacuum electronic device reaches the terahertz frequency, the ohmic loss has a significant impact on the vacuum electronic device. To study the effect of the ohmic loss on the working characteristic of the vacuum electronic terahertz devices, this paper implements the frequency-dependent surface impedance boundary condition (SIBC) in the 3 dimensional particle in cell code UNIPIC-3D. Conformal mesh is adopted in the code to overcome the staircase error in traditional particle in cell method. By using the surface impedance boundary, we eliminate the need to study the field inside the lossy dielectric objects which require extremely small grid cells for numerical stability. In comparison with constant parameter SIBC, the dispersive SIBC is applicable over a very large frequency bandwidth and over a large range of conductivities. The correctness of the implementation is verified by simulating the lossy resonant cavity and circular waveguide, the simulated power loss is comparable with the theoretical predication. High power vacuum electronic devices of terahertz regime are attracting extensive interests due to their potential applications in science and technologies. The impulse-wave relativistic surface wave oscillator (SWO) and low-voltage continuous-wave planar grating backward wave oscillator (BWO) both made of copper are numerically studied by using UNIPIC-3D and dispersive surface impedance boundary condition. Numerical results show that the strongest field is very close to the slow wave structure where the beam-wave interaction occurs and that terahertz wave generates both in these two devices. The distributed wall loss has a considerable effect on the devices: the output power has a significant decrease and the startup time becomes longer, but the working frequencies of the two devices keep unchanged. To improve the efficiency of relativistic SWO, a resonant reflector is proposed between the diode and the slow wave structure. Numerical results show that the working frequency of the device with a resonant reflector keeps unchanged as the original one, but the output power increases to 60 MW from 41 MW of the original one when the ohmic loss is considered.
      通信作者: 陈再高, chenzaigao@nint.ac.cn
    • 基金项目: 国家级-国家自然科学基金面上项目(61231003)
      Corresponding author: Chen Zai-Gao, chenzaigao@nint.ac.cn
    [1]

    Siegel P H 2002 IEEE Trans. Microw. Theory Techn. 50 910Google Scholar

    [2]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Techn. 1 54Google Scholar

    [3]

    Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L G 2013 IEEE Trans. Electron Dev. 60 2931Google Scholar

    [4]

    李爽, 王建国, 童长江, 王光强, 陆希成, 王雪峰 2013 物理学报 62 120703Google Scholar

    Li S, Wang J G, Tong C J, Wang G Q, Lu X C, Wang X F 2013 Acta Phys. Sin. 62 120703Google Scholar

    [5]

    王光强, 王建国, 李爽, 王雪峰, 陆希成, 宋志敏 2015 物理学报 64 050703Google Scholar

    Wang G Q, Wang J G, Li S, Wang X F, Lu X C, Song Z M 2015 Acta Phys. Sin. 64 050703Google Scholar

    [6]

    Wang J G, Wang G Q, Wang D Y, Li S 2018 Scientific Report 8 6978Google Scholar

    [7]

    Shin Y M, Zhao J F, Barnett L R, Luhmann N C 2010 Phys. Plasmas 17 123105Google Scholar

    [8]

    Xi H Z, He Z C, Wang J G, Li R, Zhu G, Chen Z G, Liu J S, Liu L W, Wang H 2017 Phys. Plasmas 24 033105Google Scholar

    [9]

    Zhang K C, Qi Z K, Yang Z L 2015 Chin. Phys. B 24 079402Google Scholar

    [10]

    Xi H Z, Wang J G, He Z C, Zhu G, Wang Y, Wang H, Chen Z G, Li R, Liu L W 2018 Scientific Reports 8 348Google Scholar

    [11]

    Birdsall K, Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill) pp7–32

    [12]

    Goplen B, Ludeking L, Smithe D, Warren G 1995 Comp. Phys. Comm. 87 54Google Scholar

    [13]

    Verboncoeur J P, Langdon A B, Gladd N T 1995 Comp. Phys. Comm. 87 199Google Scholar

    [14]

    Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108Google Scholar

    [15]

    Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M, Yuan Y 2010 Phys. Plasmas 17 073107Google Scholar

    [16]

    Na D Y, Omelchenko Y A, Moon H, Borges B H, Teixeira F L 2017 J. Comput. Phys. 346 295Google Scholar

    [17]

    Wang G Q, Wang J G, Li S, Wang X F 2015 AIP Advances 5 097155Google Scholar

    [18]

    杨利霞, 马辉, 施卫东, 施丽娟, 于萍 2013 物理学报 62 034102Google Scholar

    Yang L X, Ma H, Shi W D, Shi L J, Yu P 2013 Acta Phys. Sin. 62 034102Google Scholar

    [19]

    闫玉波, 葛德彪, 柴玫 2001 电波科学学报 16 484Google Scholar

    Yan Y B, Ge D B, Chai M 2001 Chin. J. Radio Sci. 16 484Google Scholar

    [20]

    Mak J C, Sarris C D 2013 IEEE International Symposium on Antennas and Propagation & Usnc/ursi National Radio Science Meeting Orlando, USA, July 7−13 2013 p902

    [21]

    Taflove A, Hagness S 2000 Computational Electrodynamics: the Finite Difference Time Domain Method (Norwood: Artech House) p67

    [22]

    Beggs J H, Luebbers R J, Yee K S, Kunz K S 1992 IEEE Trans. Ant. Propag. 40 49Google Scholar

    [23]

    Wang Y, Wang J, Chen Z, Cheng G, Wang P 2016 Comput. Phys. Commun. 205 1Google Scholar

    [24]

    Zagorodnov I A, Schuhmann R, Weiland T 2007 J. Comput. Phys. 225 1493Google Scholar

    [25]

    Chen J, Wang J G 2007 IEEE Trans. Ant. Propag. 55 3613Google Scholar

    [26]

    Chen J, Wang J G 2007 IEEE Trans. Ant. Propag. 55 3603Google Scholar

    [27]

    Maloney J G, Smith G S 1992 IEEE Trans. Ant. Propag. 40 38Google Scholar

    [28]

    Benford J 2006 High Power Microwave (New York: Taylor & Francis) p124

    [29]

    Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681Google Scholar

    [30]

    Li X, Wang J, Xiao R, Wang G, Zhang L, Zhang Y, Ye H 2013 Phys. Plasmas 20 083105Google Scholar

    [31]

    Chen C, Xiao R, Sun J, Song Z, Huo S, Bai X, Shi Y, Liu G 2013 Phys. Plasmas 20 113113Google Scholar

    [32]

    Moreland L D, Schamiloglu E, Lemke W, Korovin S D, Rostov V V, Roitman A M, Hendricks K J, Spencer T A 1994 IEEE Trans. Plasma Sci. 22 554Google Scholar

    [33]

    Xiao R, Tan W, Li X, Song Z, Sun J, Chen C 2012 Phys. Plasmas 19 093102Google Scholar

    [34]

    Xiao R, Chen C, Tan W, Teng Y 2014 IEEE Trans. Electron Dev. 61 611Google Scholar

    [35]

    Song W, Chen C, Zhang L G, Hu Y, Yang M, Zhang X 2011 Phys. Plasmas 18 063105Google Scholar

    [36]

    Song W, Teng Y, Zhang Z, Li J, Sun J, Chen C, Zhang L 2012 Phys. Plasmas 19 083105Google Scholar

  • 图 1  FDTD网格示意图

    Fig. 1.  Schematic of FDTD cell.

    图 2  局部共形网格

    Fig. 2.  Local conformal grid.

    图 3  谐振腔内诊断点处电场时间波形

    Fig. 3.  Time history of electric field inside a resonator.

    图 4  表面波振荡器示意图

    Fig. 4.  Schematic of a surface wave oscillator.

    图 5  SWO内z方向电场分布云图

    Fig. 5.  Contour of the Ez inside the SWO.

    图 6  理想导体SWO中 (a)电场时间波形; 电场频谱(b)

    Fig. 6.  Time history of the electric field (a) inside the SWO with PEC and its spectrum (b).

    图 7  有损耗铜材料SWO中 (a)电场时间波形; (b)电场频谱

    Fig. 7.  Time history of the electric field (a) inside the SWO with lossy copper and its spectrum (b).

    图 8  SWO输出功率

    Fig. 8.  Output power from the SWO.

    图 9  平板BWO结构示意图(外围波导尺寸: 宽a = 7.2 mm, 高b = 1.8 mm; 格栅尺寸: 周期l = 0.1 mm, 宽w = 2.5 mm, 高h = 0.16 mm, 间距d = 0.058 mm; 格栅周期数140)

    Fig. 9.  BWO with planar structure.(a = 7.2 mm, b = 1.8 mm; l = 0.1 mm, w = 2.5 mm, h = 0.16 mm, d = 0.058 mm)

    图 10  BWO中电子相空间图

    Fig. 10.  Phase space of electrons in the BWO

    图 11  BWO中电场波形 (a)无损耗; (b)有损耗

    Fig. 11.  Time history of electric field in the BWO with PEC (a) and lossy copper (b).

    图 12  BWO输出功率 (a) PEC边界的结果; (b)有耗金属边界的结果

    Fig. 12.  Output power from the BWO: (a) PEC ; (b) lossy copper.

    表 1  圆波导中模拟Poynting通量与理论解的对比

    Table 1.  Comparison of simulated and analytic Poynting flux in a circular waveguide.

    距离/cm理论值/P0模拟值/P0相对误差/%
    50.89640.89330.3
    100.80350.79690.8
    150.72030.71051.4
    200.64570.63351.9
    下载: 导出CSV
  • [1]

    Siegel P H 2002 IEEE Trans. Microw. Theory Techn. 50 910Google Scholar

    [2]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Techn. 1 54Google Scholar

    [3]

    Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L G 2013 IEEE Trans. Electron Dev. 60 2931Google Scholar

    [4]

    李爽, 王建国, 童长江, 王光强, 陆希成, 王雪峰 2013 物理学报 62 120703Google Scholar

    Li S, Wang J G, Tong C J, Wang G Q, Lu X C, Wang X F 2013 Acta Phys. Sin. 62 120703Google Scholar

    [5]

    王光强, 王建国, 李爽, 王雪峰, 陆希成, 宋志敏 2015 物理学报 64 050703Google Scholar

    Wang G Q, Wang J G, Li S, Wang X F, Lu X C, Song Z M 2015 Acta Phys. Sin. 64 050703Google Scholar

    [6]

    Wang J G, Wang G Q, Wang D Y, Li S 2018 Scientific Report 8 6978Google Scholar

    [7]

    Shin Y M, Zhao J F, Barnett L R, Luhmann N C 2010 Phys. Plasmas 17 123105Google Scholar

    [8]

    Xi H Z, He Z C, Wang J G, Li R, Zhu G, Chen Z G, Liu J S, Liu L W, Wang H 2017 Phys. Plasmas 24 033105Google Scholar

    [9]

    Zhang K C, Qi Z K, Yang Z L 2015 Chin. Phys. B 24 079402Google Scholar

    [10]

    Xi H Z, Wang J G, He Z C, Zhu G, Wang Y, Wang H, Chen Z G, Li R, Liu L W 2018 Scientific Reports 8 348Google Scholar

    [11]

    Birdsall K, Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill) pp7–32

    [12]

    Goplen B, Ludeking L, Smithe D, Warren G 1995 Comp. Phys. Comm. 87 54Google Scholar

    [13]

    Verboncoeur J P, Langdon A B, Gladd N T 1995 Comp. Phys. Comm. 87 199Google Scholar

    [14]

    Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108Google Scholar

    [15]

    Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M, Yuan Y 2010 Phys. Plasmas 17 073107Google Scholar

    [16]

    Na D Y, Omelchenko Y A, Moon H, Borges B H, Teixeira F L 2017 J. Comput. Phys. 346 295Google Scholar

    [17]

    Wang G Q, Wang J G, Li S, Wang X F 2015 AIP Advances 5 097155Google Scholar

    [18]

    杨利霞, 马辉, 施卫东, 施丽娟, 于萍 2013 物理学报 62 034102Google Scholar

    Yang L X, Ma H, Shi W D, Shi L J, Yu P 2013 Acta Phys. Sin. 62 034102Google Scholar

    [19]

    闫玉波, 葛德彪, 柴玫 2001 电波科学学报 16 484Google Scholar

    Yan Y B, Ge D B, Chai M 2001 Chin. J. Radio Sci. 16 484Google Scholar

    [20]

    Mak J C, Sarris C D 2013 IEEE International Symposium on Antennas and Propagation & Usnc/ursi National Radio Science Meeting Orlando, USA, July 7−13 2013 p902

    [21]

    Taflove A, Hagness S 2000 Computational Electrodynamics: the Finite Difference Time Domain Method (Norwood: Artech House) p67

    [22]

    Beggs J H, Luebbers R J, Yee K S, Kunz K S 1992 IEEE Trans. Ant. Propag. 40 49Google Scholar

    [23]

    Wang Y, Wang J, Chen Z, Cheng G, Wang P 2016 Comput. Phys. Commun. 205 1Google Scholar

    [24]

    Zagorodnov I A, Schuhmann R, Weiland T 2007 J. Comput. Phys. 225 1493Google Scholar

    [25]

    Chen J, Wang J G 2007 IEEE Trans. Ant. Propag. 55 3613Google Scholar

    [26]

    Chen J, Wang J G 2007 IEEE Trans. Ant. Propag. 55 3603Google Scholar

    [27]

    Maloney J G, Smith G S 1992 IEEE Trans. Ant. Propag. 40 38Google Scholar

    [28]

    Benford J 2006 High Power Microwave (New York: Taylor & Francis) p124

    [29]

    Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681Google Scholar

    [30]

    Li X, Wang J, Xiao R, Wang G, Zhang L, Zhang Y, Ye H 2013 Phys. Plasmas 20 083105Google Scholar

    [31]

    Chen C, Xiao R, Sun J, Song Z, Huo S, Bai X, Shi Y, Liu G 2013 Phys. Plasmas 20 113113Google Scholar

    [32]

    Moreland L D, Schamiloglu E, Lemke W, Korovin S D, Rostov V V, Roitman A M, Hendricks K J, Spencer T A 1994 IEEE Trans. Plasma Sci. 22 554Google Scholar

    [33]

    Xiao R, Tan W, Li X, Song Z, Sun J, Chen C 2012 Phys. Plasmas 19 093102Google Scholar

    [34]

    Xiao R, Chen C, Tan W, Teng Y 2014 IEEE Trans. Electron Dev. 61 611Google Scholar

    [35]

    Song W, Chen C, Zhang L G, Hu Y, Yang M, Zhang X 2011 Phys. Plasmas 18 063105Google Scholar

    [36]

    Song W, Teng Y, Zhang Z, Li J, Sun J, Chen C, Zhang L 2012 Phys. Plasmas 19 083105Google Scholar

  • [1] 李正红, 谢鸿全. 过模返波管的正反馈机制. 物理学报, 2019, 68(5): 054103. doi: 10.7498/aps.68.20181897
    [2] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟. 物理学报, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [3] 郭伟杰, 陈再高, 蔡利兵, 王光强, 程国新. 0.14 THz双环超材料慢波结构表面波振荡器数值研究. 物理学报, 2015, 64(7): 070702. doi: 10.7498/aps.64.070702
    [4] 王光强, 王建国, 李爽, 王雪锋, 陆希成, 宋志敏. 0.34 THz大功率过模表面波振荡器研究. 物理学报, 2015, 64(5): 050703. doi: 10.7498/aps.64.050703
    [5] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响. 物理学报, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [6] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响. 物理学报, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [7] 陈再高, 王建国, 王玥, 朱湘琴, 张殿辉, 乔海亮. 相对论返波管超辐射产生与辐射的数值模拟研究. 物理学报, 2014, 63(3): 038402. doi: 10.7498/aps.63.038402
    [8] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [9] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [10] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究. 物理学报, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [11] 王宇, 陈再高, 雷奕安. 等离子体填充0.14 THz相对论返波管模拟. 物理学报, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [12] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟. 物理学报, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [13] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟. 物理学报, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [14] 李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋. 大功率0.34 THz辐射源中慢波结构的优化设计. 物理学报, 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [15] 王光强, 王建国, 李爽, 王雪锋, 童长江, 陆希成, 郭伟杰. 0.14THz过模表面波振荡器的模式分析. 物理学报, 2013, 62(15): 150701. doi: 10.7498/aps.62.150701
    [16] 李小泽, 滕雁, 王建国, 宋志敏, 张黎军, 张余川, 叶虎. 过模结构表面波振荡器模式选择. 物理学报, 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [17] 杨超, 刘大刚, 周俊, 廖臣, 彭凯, 刘盛纲. 一种新型径向三腔同轴虚阴极振荡器全三维粒子模拟研究. 物理学报, 2011, 60(8): 084102. doi: 10.7498/aps.60.084102
    [18] 李小泽, 王建国, 童长江, 张 海. 充填不同气体相对论返波管特性的PIC-MCC模拟. 物理学报, 2008, 57(7): 4613-4622. doi: 10.7498/aps.57.4613
    [19] 李正红, 常安碧, 鞠炳全, 张永辉, 向 飞, 赵殿林, 甘延青, 刘 忠, 苏 昶, 黄 华. 准两腔振荡器的理论和实验研究. 物理学报, 2007, 56(5): 2603-2607. doi: 10.7498/aps.56.2603
    [20] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟. 物理学报, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
计量
  • 文章访问数:  6670
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-29
  • 修回日期:  2019-11-27
  • 刊出日期:  2020-02-20

/

返回文章
返回