搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0.34 THz大功率过模表面波振荡器研究

王光强 王建国 李爽 王雪锋 陆希成 宋志敏

引用本文:
Citation:

0.34 THz大功率过模表面波振荡器研究

王光强, 王建国, 李爽, 王雪锋, 陆希成, 宋志敏

Study on 0.34 THz overmoded surface wave oscillator

Wang Guang-Qiang, Wang Jian-Guo, Li Shuang, Wang Xue-Feng, Lu Xi-Cheng, Song Zhi-Min
PDF
导出引用
  • 论文对0.34 THz大功率过模表面波振荡器进行了模拟设计和初步实验研究. 针对高过模比(D/λ ≈ 6.8)慢波结构, 根据小信号理论选择了合适的慢波结构尺寸和电子束距壁距离, 实现了器件在表面波TM01模的π点附近谐振. 根据PIC模拟结果, 表面波振荡器可以实现频率和功率分别为0.34 THz和22.8 MW的太赫兹波输出. 采用微细电火花加工技术完成了不锈钢慢波结构的一体化精细加工, 并基于小型化脉冲功率驱动源搭建了实验装置. 初步的实验结果表明, 在电子束电压和电流分别约为420 kV和3.1 kA时, 0.34 THz大功率过模表面波振荡器输出脉冲的频率范围为0.319–0.349 THz, 辐射功率不小于250 kW, 脉宽约为2 ns. 最后分析讨论了实验输出功率与模拟结果相差较大的原因, 为表面波振荡器的性能改善奠定了基础.
    The simulation design and preliminary experiment on a 0.34 THz large-power overmoded surface wave oscillator are presented in this paper. For the slow wave structure (SWS) with large overmoded ratio (D/λ ≈ 6.8), a small signal theory is derived for appropriate dimensions of SWS and gap between electron beam and SWS, and makes the device oscillate near the π point of surface wave at TM01 mode. PIC (particle in cell) simulation results show that this SWO (small wave oscillation) can genetate the terahertz wave with frequency and output power of 0.34 THz and 22.8 MW, respectively. SWS with stainless steel is integrally and precisely fabricated by employing mirco-EDM technology, and the experimental setup is built based on a miniaturized pulse power driving source. Results of preliminary experiment and diagnostics show that a terahertz pulse is radiated at a frequency range of 0.319–0.349 THz, a power of no less than 250 kW, and a pulse duration of about 2 ns at beam voltage of about 420 kV and beam current of about 3.1 kA. Finally, the reason for discrepancy between the measured power and the simulation result is analyzed and discussed, laying the foundation for the performance improvement of terahertz surface wave oscillator.
    [1]

    Siegel H P 2002 IEEE Trans. Microw. Theory Tech. 50 910

    [2]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Techn. 1 54

    [3]

    Bratman V L, Denisov G G, Ofitserov M M, Korovin S D, Polevin S D, Rostov V V 1987 IEEE Trans. Plasma Sci. PS-15 2

    [4]

    Min S H, Kwon O J, Sattorov M A, So J K, Park S H, Baek I K, Choi D H, Shin Y M, Park G S 2011 Proceedings of 36th International conference on IRMMW-THz Houston, USA, October 2-7 2011 p1

    [5]

    Bratman V L, Fedotov A E, Makhalov P B 2012 Phys.Plasmas. 19 020704

    [6]

    Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin A, Manuilov V, Mitsudo S, Ogawa I, Saito T, Tatematsu Y, Zapevalov V 2009 IEEE Trans. Plasma Sci. 37 36

    [7]

    Chen Z, Wang J, Wang Y, Qiao H, Guo W and Zhang D 2014 Chin. Phys. B 23 068402

    [8]

    Chen Z, Wang J, Wang Y 2014 Chin. Phys. B 23 108401

    [9]

    Booske J H 2008 Phys. Plasma 15 055502

    [10]

    Paoloni C, Brunetti F, Carlo A D, Mineo M, Tamburri E, Terranova M L, Ulisse G, Durand A, Marchesin R, Pham K, Krozer V, M Kotiranta, Rossi A D, Dolfi D, Guiset P, Legagneux P, Schnell J P, Fiorello A, Dispenza M, Secchi A, Zhurbenko V, Megtert S, Bouamrane F, Cojocaru C S, Gohier A 2011 Proceedings of International Vacuum Electronics Conference, Bangalore, India, February 21-24 2011 p55

    [11]

    Nusinovich G S, Pu R F, Antonsen T M, Sinitsyn O V, Rodgers J, Mohamed A, Silverman J, Sheikhly M A, Dimant Y S, Milikh G M 2011 J Infrared Milli Terahertz Waves 32 380

    [12]

    David K A, Yuval C, Susanne M M, Alan B, Baruch L, Thomas M A, William W D 1998 IEEE Trans. Plasma Sci. 26 591

    [13]

    Chen H B, Zhou C M, Hu L L, Ma G W, Xu D M, Song R, Jin X 2010 High Power Laser and Particle Beams 22 865 (in Chinese) [陈洪斌,周传明,胡林林、马国武,许冬明,宋睿,金晓 2010 强激光与粒子束 22 865]

    [14]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 物理学报 59 8459]

    [15]

    Wang G Q, Wang J G, Li S, Wang X F, Tong C J Lu X C, Guo W J 2013 Acta Phys. Sin. 62 150701 (in Chinese) [王光强, 王建国, 李爽, 王雪锋, 童长江, 陆希成, 郭伟杰 2013 物理学报 62 150701]

    [16]

    Li X Z, Wang G Q, Wang J G, Tong C J, Wang X F, Song Z M, Li S, Lu X C 2013 High Power Laser and Particle Beams 25 451 (in Chinese) [李小泽, 王光强, 王建国, 童长江, 王雪锋, 李爽, 陆希成 2013 强激光与粒子束 25 451]

    [17]

    Wang G Q, Wang J G, Tong C J, Li X Z, Li S, Wang X F, Lu X C 2013 Phys. Plasmas 20 043105

    [18]

    Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L G 2013 IEEE Trans. Electron Devices 60 2931

    [19]

    Swegle J A, Poukey J W, Leifeste G T 1985 Phys. Fluids 28 2882

    [20]

    Li S, Wang J G, Tong C J, Wang G Q, Lu X C, Wang X F 2013 Acta Phys. Sin. 62 120703 (in Chinese) [李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋 2013 物理学报 62 120703]

    [21]

    Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108

    [22]

    Li S, Wang G Q, Tong C J, Wang X F 2013 Proceedings of Cross Strait Quad-Regional Radio Science and Wireless Technology Conferenece Chengdu, China, July 21-25 2013 p408

    [23]

    Xiao R Z, Tan W B, Li X Z, Song Z M, Sun J, Chen C H 2012 Phys. Plasmas 19 093102

    [24]

    Huo S F, Chen C H, Sun J, Song Z M, Song W, Xiao R Z 2011 High Power Laser and Particle Beams 11 2959 (in Chinese) [霍少飞, 陈昌华, 孙钧, 宋志敏, 宋玮, 肖仁珍 2011 强激光与粒子束 11 2959]

    [25]

    Wang G Q, Wang J G, Wang X F, Tong C J, Li S, Lu X C 2013 Pro. SPIE 890904

  • [1]

    Siegel H P 2002 IEEE Trans. Microw. Theory Tech. 50 910

    [2]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. Terahertz Sci. Techn. 1 54

    [3]

    Bratman V L, Denisov G G, Ofitserov M M, Korovin S D, Polevin S D, Rostov V V 1987 IEEE Trans. Plasma Sci. PS-15 2

    [4]

    Min S H, Kwon O J, Sattorov M A, So J K, Park S H, Baek I K, Choi D H, Shin Y M, Park G S 2011 Proceedings of 36th International conference on IRMMW-THz Houston, USA, October 2-7 2011 p1

    [5]

    Bratman V L, Fedotov A E, Makhalov P B 2012 Phys.Plasmas. 19 020704

    [6]

    Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin A, Manuilov V, Mitsudo S, Ogawa I, Saito T, Tatematsu Y, Zapevalov V 2009 IEEE Trans. Plasma Sci. 37 36

    [7]

    Chen Z, Wang J, Wang Y, Qiao H, Guo W and Zhang D 2014 Chin. Phys. B 23 068402

    [8]

    Chen Z, Wang J, Wang Y 2014 Chin. Phys. B 23 108401

    [9]

    Booske J H 2008 Phys. Plasma 15 055502

    [10]

    Paoloni C, Brunetti F, Carlo A D, Mineo M, Tamburri E, Terranova M L, Ulisse G, Durand A, Marchesin R, Pham K, Krozer V, M Kotiranta, Rossi A D, Dolfi D, Guiset P, Legagneux P, Schnell J P, Fiorello A, Dispenza M, Secchi A, Zhurbenko V, Megtert S, Bouamrane F, Cojocaru C S, Gohier A 2011 Proceedings of International Vacuum Electronics Conference, Bangalore, India, February 21-24 2011 p55

    [11]

    Nusinovich G S, Pu R F, Antonsen T M, Sinitsyn O V, Rodgers J, Mohamed A, Silverman J, Sheikhly M A, Dimant Y S, Milikh G M 2011 J Infrared Milli Terahertz Waves 32 380

    [12]

    David K A, Yuval C, Susanne M M, Alan B, Baruch L, Thomas M A, William W D 1998 IEEE Trans. Plasma Sci. 26 591

    [13]

    Chen H B, Zhou C M, Hu L L, Ma G W, Xu D M, Song R, Jin X 2010 High Power Laser and Particle Beams 22 865 (in Chinese) [陈洪斌,周传明,胡林林、马国武,许冬明,宋睿,金晓 2010 强激光与粒子束 22 865]

    [14]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 物理学报 59 8459]

    [15]

    Wang G Q, Wang J G, Li S, Wang X F, Tong C J Lu X C, Guo W J 2013 Acta Phys. Sin. 62 150701 (in Chinese) [王光强, 王建国, 李爽, 王雪锋, 童长江, 陆希成, 郭伟杰 2013 物理学报 62 150701]

    [16]

    Li X Z, Wang G Q, Wang J G, Tong C J, Wang X F, Song Z M, Li S, Lu X C 2013 High Power Laser and Particle Beams 25 451 (in Chinese) [李小泽, 王光强, 王建国, 童长江, 王雪锋, 李爽, 陆希成 2013 强激光与粒子束 25 451]

    [17]

    Wang G Q, Wang J G, Tong C J, Li X Z, Li S, Wang X F, Lu X C 2013 Phys. Plasmas 20 043105

    [18]

    Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J, Zhang L G 2013 IEEE Trans. Electron Devices 60 2931

    [19]

    Swegle J A, Poukey J W, Leifeste G T 1985 Phys. Fluids 28 2882

    [20]

    Li S, Wang J G, Tong C J, Wang G Q, Lu X C, Wang X F 2013 Acta Phys. Sin. 62 120703 (in Chinese) [李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋 2013 物理学报 62 120703]

    [21]

    Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108

    [22]

    Li S, Wang G Q, Tong C J, Wang X F 2013 Proceedings of Cross Strait Quad-Regional Radio Science and Wireless Technology Conferenece Chengdu, China, July 21-25 2013 p408

    [23]

    Xiao R Z, Tan W B, Li X Z, Song Z M, Sun J, Chen C H 2012 Phys. Plasmas 19 093102

    [24]

    Huo S F, Chen C H, Sun J, Song Z M, Song W, Xiao R Z 2011 High Power Laser and Particle Beams 11 2959 (in Chinese) [霍少飞, 陈昌华, 孙钧, 宋志敏, 宋玮, 肖仁珍 2011 强激光与粒子束 11 2959]

    [25]

    Wang G Q, Wang J G, Wang X F, Tong C J, Li S, Lu X C 2013 Pro. SPIE 890904

  • [1] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [2] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [3] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [4] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收. 物理学报, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [5] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [6] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [7] 傅涛, 杨梓强, 欧阳征标. 等离子体填充金属光子晶体慢波结构色散特性研究. 物理学报, 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [8] 郭伟杰, 陈再高, 蔡利兵, 王光强, 程国新. 0.14 THz双环超材料慢波结构表面波振荡器数值研究. 物理学报, 2015, 64(7): 070702. doi: 10.7498/aps.64.070702
    [9] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响. 物理学报, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [10] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响. 物理学报, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [11] 王兵, 文光俊, 王文祥. 同轴交错圆盘加载波导慢波结构高频特性的研究. 物理学报, 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [12] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究. 物理学报, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [13] 韦朴, 周明干, 朱露, 张劲, 王雪峰, 吕东亚, 陈宁, 杨明华, 孙小菡. 螺旋线慢波结构夹持性能测试方法研究. 物理学报, 2013, 62(9): 094401. doi: 10.7498/aps.62.094401
    [14] 李小泽, 滕雁, 王建国, 宋志敏, 张黎军, 张余川, 叶虎. 过模结构表面波振荡器模式选择. 物理学报, 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [15] 李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋. 大功率0.34 THz辐射源中慢波结构的优化设计. 物理学报, 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [16] 王光强, 王建国, 李爽, 王雪锋, 童长江, 陆希成, 郭伟杰. 0.14THz过模表面波振荡器的模式分析. 物理学报, 2013, 62(15): 150701. doi: 10.7498/aps.62.150701
    [17] 刘洋, 徐进, 许雄, 沈飞, 魏彦玉, 黄民智, 唐涛, 王文祥, 宫玉彬. V形曲折矩形槽慢波结构的研究. 物理学报, 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [18] 易红霞, 肖刘, 刘濮鲲, 郝保良, 李飞, 李国超. 基于电子注可回收能力的空间行波管慢波结构的优化设计. 物理学报, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [19] 路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥. 具有任意槽的矩形波导栅慢波结构高频特性的研究. 物理学报, 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [20] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究. 物理学报, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
计量
  • 文章访问数:  5230
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-19
  • 修回日期:  2014-10-11
  • 刊出日期:  2015-03-05

/

返回文章
返回