搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针-板空气间隙流注放电起始过程的三维PIC/MCC仿真研究

李晗蔚 孙安邦 张幸 姚聪伟 常正实 张冠军

引用本文:
Citation:

针-板空气间隙流注放电起始过程的三维PIC/MCC仿真研究

李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军

Three-dimensional PIC/MCC numerical study on the initial process of streamer discharge in a needle-plate electrode in atmospheric air

Li Han-Wei, Sun An-Bang, Zhang Xing, Yao Cong-Wei, Chang Zheng-Shi, Zhang Guan-Jun
PDF
导出引用
  • 流注放电作为自然界中闪电传播的预电离机制、高压输变线路间长空间间隙放电的重要初始阶段,在工业领域存在诸多潜在应用,近年来引起人们越来越多的关注.流注放电具有典型的多尺度、非线性的放电特征,实验观测中多呈现出分叉等不规则结构.为了研究其微观结构特性和行为特征,本文采用三维粒子仿真模型(PIC/MCC),着重研究了流注从针型正电极的起始和发展过程.模型采用了可变自适应网格、可变粒子权重以及并行计算等技术,有效地降低了三维粒子仿真的计算时间.通过调节针型电极上的施加电压幅值、改变气体组分及调整电极形状尺寸等,研究了放电参数变化对流注放电的分叉结构、半径等行为的影响.模拟结果表明:随着电压的升高,流注的半径及分叉数目增加;对比不同气体组分(纯氧以及不同比例氮氧混合气体),发现其对流注的分叉数目影响较为显著;针型电极结构直接影响了流注的起始时间和形貌.
    Streamer, which usually appears at the initial stage of atmospheric pressure air discharge, acts as a precursor of lightning. It also occurs as large discharges (called sprites) in upper atmosphere, far above the thundercloud. The streamer discharge has many potential applications in industry, such as gas or water cleaning, ozone generation, assisted combustion, etc. The streamer discharge is difficult to investigate both experimentally and computationally, because of its non-linear and multi-scale characteristics. Various studies on streamer discharge have been carried out, and some progress has been made. However, some things remain to be further understood, i.e., the law of particles motion and the factors influencing streamer discharge. In this paper, we use a pre-established three-dimensional (3D) particle model (PIC/MCC) to study streamer discharge with a needle-plate electrode in air. To simplify the condition, we only use nitrogen-oxygen mixture to represent dry air, regardless of other components such as CO2, H2O gases, etc. In this model, we take photoionization, attachment and detachment processes into account. The adaptive mesh refinement and adaptive particle weight techniques are used in the code. In order to facilitate the simulation, we artificially put a Gaussian seed right on the top of the needle electrode. We adjust some computational parameters to analyze how the streamer discharge starts and evolves from the needle electrode. Many factors can influence streamer discharge during its evolution, from among which we choose three important parameters:voltage amplitude, gas component, and the radius of curvature of the needle electrode tip, to study the generation and evolution of streamer discharge, and focus on inception cloud, streamer branches, and electric fields. The simulation results show that the radius of inception cloud increases with the increase of voltage amplitude, and the diameter of steamer channel and the number of branches also increase with voltage increasing. We choose 4 kV as a proper simulation voltage for next two parts of simulations. By comparing the results obtained in the cases of different gas components (pure oxygen and different ratios of nitrogen-oxygen mixtures), we discover that the nitrogen-oxygen mixture ratio significantly affects the total number of streamer branches. With 0.1% oxygen, discharge grows irregularly with small protrusions on streamers. In the pure oxygen case, streamer seems to have much more thin branches than in other cases. Needle geometry directly changes the inception cloud of the streamer and its morphology, especially when the tip becomes blunter. In this circumstance, electric field strength around the electrode decreases, and inception cloud can be barely seen. Instead, a single-channel streamer discharge develops right toward the plate electrode, later this single-channel streamer splits into branches.
      通信作者: 孙安邦, anbang.sun@xjtu.edu.cn;changzhsh1984@163.com ; 常正实, anbang.sun@xjtu.edu.cn;changzhsh1984@163.com
    • 基金项目: 国家自然科学基金(批准号:51777164)、西安交通大学青年拔尖人才支持计划(批准号:DQ1J008)、电力设备电气绝缘国家重点实验室(批准号:EIPE17311)和中央高校基本科研业务费专项资金(批准号:1191329723)资助的课题.
      Corresponding author: Sun An-Bang, anbang.sun@xjtu.edu.cn;changzhsh1984@163.com ; Chang Zheng-Shi, anbang.sun@xjtu.edu.cn;changzhsh1984@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51777164), the Young Talent Plan of Xi'an Jiaotong University (Grant No. DQ1J008), State Key Laboratory of Electrical Insulation and Power Equipment (Grant No. EIPE17311), and the Fundamental Research Funds for the Central Universities, China (Grant No. 1191329723).
    [1]

    Nijdam S 2011 Experimental Investigations on the Physics of Streamers (Eindhoven:Technische Universiteit Eindhoven) pp2-4

    [2]

    Nijdam S, van Veldhuizen E, Peter B 2012 Plasma Chemistry Catalysis in Gases Liquids (Germany:WILEY-ICH) pp1-44

    [3]

    Zhang C, Tarasenko V F, Shao T, Beloplotov D V, Lomaev M I, Wang R, Sorokin D A, Yan P 2015 Phys. Plasmas 22 033511

    [4]

    Raether H 1939 Z. Phys. 112 464

    [5]

    Loeb L B, Meek J M 1940 J. Appl. Phys. 11 438

    [6]

    Briels T M P, van Veldhuizen E M, Ebert U 2008 J. Phys. D:Appl. Phys. 41 234008

    [7]

    Nijdam S, Moerman J S, Briels T M P, van Veldhuizen E M, Ebert U 2008 Appl. Phys. Lett. 92 101502

    [8]

    Peng Q J 2012 Ph. D. Dissertation (Chongqing:Chongqing University) (in Chinese)[彭庆军 2012 博士学位论文 (重庆:重庆大学)]

    [9]

    Kulikovsky A A 1997 J. Phys. D:Appl. Phys. 30 441

    [10]

    Luque A, Ebert U 2014 New J. Phys. 16 013039

    [11]

    Li Y D, Wang R P, Zhang Q G, Zhou Y, Wang H G, Liu C L 2011 IEEE Trans. Plasma Sci. 39 2226

    [12]

    Sun A B, Teunissen J, Ebert U 2013 Geophys. Res. Lett. 40 2417

    [13]

    Sun A B, Teunissen J, Ebert U 2014 J. Phys. D:Appl. Phys. 47 445205

    [14]

    Teunissen J, Sun A B, Ebert U 2014 J. Phys. D:Appl. Phys. 47 365203

    [15]

    Li C, Ebert U, Hundsdorfer W 2010 J. Comput. Phys. 229 200

    [16]

    Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101 (in Chinese)[孙安邦, 李晗蔚, 许鹏, 张冠军 2017 物理学报 66 195101]

    [17]

    Teunissen J, Ebert U 2016 Plasma Sources Sci. Technol. 25 044005

    [18]

    Sun A B, Becker M M, Loffhagen D 2016 Comput. Phys. Commun. 206 35

    [19]

    Teunissen J, Ebert U 2014 J. Comput. Phys. 259 318

    [20]

    Nijdam S, van de Wetering F M J H, Blanc R, van Veldhuizen E M, Ebert U 2010 J. Phys. D:Appl. Phys. 43 145204

  • [1]

    Nijdam S 2011 Experimental Investigations on the Physics of Streamers (Eindhoven:Technische Universiteit Eindhoven) pp2-4

    [2]

    Nijdam S, van Veldhuizen E, Peter B 2012 Plasma Chemistry Catalysis in Gases Liquids (Germany:WILEY-ICH) pp1-44

    [3]

    Zhang C, Tarasenko V F, Shao T, Beloplotov D V, Lomaev M I, Wang R, Sorokin D A, Yan P 2015 Phys. Plasmas 22 033511

    [4]

    Raether H 1939 Z. Phys. 112 464

    [5]

    Loeb L B, Meek J M 1940 J. Appl. Phys. 11 438

    [6]

    Briels T M P, van Veldhuizen E M, Ebert U 2008 J. Phys. D:Appl. Phys. 41 234008

    [7]

    Nijdam S, Moerman J S, Briels T M P, van Veldhuizen E M, Ebert U 2008 Appl. Phys. Lett. 92 101502

    [8]

    Peng Q J 2012 Ph. D. Dissertation (Chongqing:Chongqing University) (in Chinese)[彭庆军 2012 博士学位论文 (重庆:重庆大学)]

    [9]

    Kulikovsky A A 1997 J. Phys. D:Appl. Phys. 30 441

    [10]

    Luque A, Ebert U 2014 New J. Phys. 16 013039

    [11]

    Li Y D, Wang R P, Zhang Q G, Zhou Y, Wang H G, Liu C L 2011 IEEE Trans. Plasma Sci. 39 2226

    [12]

    Sun A B, Teunissen J, Ebert U 2013 Geophys. Res. Lett. 40 2417

    [13]

    Sun A B, Teunissen J, Ebert U 2014 J. Phys. D:Appl. Phys. 47 445205

    [14]

    Teunissen J, Sun A B, Ebert U 2014 J. Phys. D:Appl. Phys. 47 365203

    [15]

    Li C, Ebert U, Hundsdorfer W 2010 J. Comput. Phys. 229 200

    [16]

    Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101 (in Chinese)[孙安邦, 李晗蔚, 许鹏, 张冠军 2017 物理学报 66 195101]

    [17]

    Teunissen J, Ebert U 2016 Plasma Sources Sci. Technol. 25 044005

    [18]

    Sun A B, Becker M M, Loffhagen D 2016 Comput. Phys. Commun. 206 35

    [19]

    Teunissen J, Ebert U 2014 J. Comput. Phys. 259 318

    [20]

    Nijdam S, van de Wetering F M J H, Blanc R, van Veldhuizen E M, Ebert U 2010 J. Phys. D:Appl. Phys. 43 145204

  • [1] 杨双越, 温小琼, 杨元天, 李霄. 水下多针电极微秒脉冲流光放电特性. 物理学报, 2024, 73(7): 075203. doi: 10.7498/aps.73.20231881
    [2] 周鑫淼, 张博雅, 陈立, 李兴文. 金属微粒影响三电极气体火花开关击穿过程的仿真研究. 物理学报, 2024, 73(1): 015202. doi: 10.7498/aps.73.20231283
    [3] 邹丹旦, 涂忱胜, 胡平子, 李春华, 钱沐杨. 脉冲电磁驱动低温螺旋流注放电机理. 物理学报, 2023, 72(11): 115204. doi: 10.7498/aps.72.20230034
    [4] 冯博文, 王若愚, 马雨彭雪, 钟晓霞. 常压针-板放电等离子体密度演化. 物理学报, 2021, 70(9): 095201. doi: 10.7498/aps.70.20201790
    [5] 吴金芳, 陈兆权, 张明, 张煌, 张三阳, 冯德仁, 周郁明. 微波瑞利散射法测定空气电火花激波等离子体射流的时变电子密度. 物理学报, 2020, 69(7): 075202. doi: 10.7498/aps.69.20191909
    [6] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究. 物理学报, 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [7] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [8] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [9] 郑殿春, 丁宁, 沈湘东, 赵大伟, 郑秋平, 魏红庆. 基于分形理论的尖-板电极短空气隙放电现象研究. 物理学报, 2016, 65(2): 024703. doi: 10.7498/aps.65.024703
    [10] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [11] 胡海帆, 王颖, 陈杰, 赵士斌. 全三维电离粒子有源像素探测器优化仿真. 物理学报, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [12] 付洋洋, 罗海云, 邹晓兵, 王强, 王新新. 棒-板电极下缩比气隙辉光放电相似性的仿真研究. 物理学报, 2014, 63(9): 095206. doi: 10.7498/aps.63.095206
    [13] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [14] 伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之. 棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析. 物理学报, 2013, 62(11): 115201. doi: 10.7498/aps.62.115201
    [15] 杨超, 龙继东, 王平, 廖方燕, 夏蒙重, 刘腊群. 潘宁源放电的全三维电磁粒子模拟/蒙特卡罗碰撞数值算法研究. 物理学报, 2013, 62(20): 205207. doi: 10.7498/aps.62.205207
    [16] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [17] 何福顺, 李刘合, 李芬, 顿丹丹, 陶婵偲. 增强辉光放电等离子体离子注入的三维PIC/MC模拟. 物理学报, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [18] 章程, 邵涛, 牛铮, 张东东, 王珏, 严萍. 大气压尖板电极结构重复频率纳秒脉冲放电中X射线辐射特性研究. 物理学报, 2012, 61(3): 035202. doi: 10.7498/aps.61.035202
    [19] 俞哲, 张芝涛, 于清旋, 许少杰, 姚京, 白敏冬, 田一平, 刘开颖. 针-板DBD微流注与微辉光交替生成的机理研究. 物理学报, 2012, 61(19): 195202. doi: 10.7498/aps.61.195202
    [20] 白秀庭, 周庭东. 辉光放电等离子体三维电流的理论分析. 物理学报, 1993, 42(9): 1463-1470. doi: 10.7498/aps.42.1463
计量
  • 文章访问数:  7332
  • PDF下载量:  417
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-26
  • 修回日期:  2017-12-05
  • 刊出日期:  2019-02-20

/

返回文章
返回