搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维漏斗中颗粒物质堵塞问题的数值实验研究

麻礼东 杨光辉 张晟 林平 田园 杨磊

引用本文:
Citation:

三维漏斗中颗粒物质堵塞问题的数值实验研究

麻礼东, 杨光辉, 张晟, 林平, 田园, 杨磊

Numerical experiment studies of clogging during the discharge of granular matter in a three-dimensional hopper

Ma Li-Dong, Yang Guang-Hui, Zhang Sheng, Lin Ping, Tian Yuan, Yang Lei
PDF
导出引用
  • 对于工程和实验中使用漏斗颗粒流而言,连续稳定的流量是必要的.当漏斗口较小时,很容易发生堵塞行为.堵塞现象对于交通流、疏散问题等也具有重要的意义.前人主要使用扰动的方法破坏漏斗中已有的堵塞,以便引起下一次堵塞,加快实验进程.本文利用自主开发的基于GPU(graphics processing unit)的密集颗粒流模拟程序,主要研究当三维漏斗开口打开后的第一次堵塞行为,不再引入扰动.详细讨论了漏斗开口尺寸、漏斗锥角等几何参数对坍塌规模的影响.发现对于坍塌规模的概率分布符合前人的研究结果,可以分为两部分:峰的左边呈幂函数上升形式,峰的右边呈指数衰减趋势.对于漏斗开口尺寸和漏斗锥角而言,均存在一个临界值使得堵塞不再发生.
    For a granular flow in hopper in engineering and experimental applications, it is necessary to guarantee the discharge continuously and steadily. The clogging will easily happen if the outlet size is small enough via formation of the arch above the outlet. The clogging phenomenon is also important for studying traffic or evacuation problems. In previous numerical and experimental study, to expedite the experiments or simulations, the perturbations, such as a jet of pressurized air or the vibration of the wall of the hopper, were induced to break the clogging and restart the flow. But these perturbations are hardly normalized and described in modeling the process. In this paper, we present a series of numerical experiments of clogging in the discharge of particles from a three-dimensional hopper through a circular opening. We employ our discrete element method simulation code for large scale dense granular flow based on the graphic processing unit to expedite this simulation. In contrast to pervious studies, here we study the first clogging after opening the outlet of hopper, thus the above perturbations are avoided. From simulating granular flow in hopper in a wide range of outlet size and cone angle, we obtain the size of distribution of avalanche, which is defined as the number of particles that fall through the opening from the outlet opening to the first clogging. The effects of the outlet size and cone angle of hopper on avalanche size are investigated and discussed. The results show that the previous conclusion of the distribution of possibility of avalanche size is also valid in this study. There is a peak in the distribution of possibility of avalanche size, and the distribution can be divided into two regions, which can be fitted with a power-law and an exponential function respectively. The exponential part can be explained by a possibility model which is suggested by Janda et al. From the fitting we find that it has a critical value for the outlet size above which no clogging will occur and the value in this work (4.75d) is slightly lower than in Zuriguel et al.'s experiment (4.94d). Moreover, there is also a critical value for the cone angle of hopper, which supports the inference in previous study and the value in this paper (77) is closed to the predicted one (75) in To et al.'s work.
      通信作者: 杨磊, lyang@impcas.ac.cn
    • 基金项目: 国际热核聚变实验堆(ITER)计划专项(批准号:2014GB104002)和国家自然科学基金(批准号:11605264)资助的课题.
      Corresponding author: Yang Lei, lyang@impcas.ac.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2014GB104002) and National Natural Science Foundation of China (Grant No. 11605264).
    [1]

    Peng Y J, Zhang Z, Wang Y, et al. 2012 Acta Phys. Sin. 61 134501 (in Chinese)[彭亚晶, 张卓, 王勇, 等 2012 物理学报 61 134501]

    [2]

    Xie X M, Jiang Y M, Wang H Y, et al. 2003 Acta Phys. Sin. 52 2194 (in Chinese)[谢晓明, 蒋亦民, 王焕友, 等 2003 物理学报 52 2194]

    [3]

    Lu K Q, Hou M Y, Jiang Z H, et al. 2012 Acta Phys. Sin. 61 119103 (in Chinese)[陆坤权, 厚美瑛, 姜泽辉, 等 2012 物理学报 61 119103]

    [4]

    Zuriguel I, Pugnaloni L A, Garcimartin A, Maza D 2003 Phys. Rev. E 68 3

    [5]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 17

    [6]

    Lu K, Liu J 2004 Physics 33 10 (in Chinese)[陆坤权, 刘寄星 2004 物理 33 10]

    [7]

    Zuriguel I, Parisi D R, Hidalgo R C, Lozano C, Janda A, Gago P A, Peralta J P, Ferrer L M, Pugnaloni L A, Clement E, Maza D, Pagonabarraga I, Garcimartin A 2014 Sci. Reports 4 7324

    [8]

    To K, Lai P Y, Pak H K 2001 Phys. Rev. Lett. 86 1

    [9]

    Masuda T, Nishinari K, Schadschneider A 2014 Phys. Rev. Lett. 112 13

    [10]

    To K W 2005 Phys. Rev. E 71 6

    [11]

    Janda A, Zuriguel I, Garcimartin A, Pugnaloni L A, Maza D 2008 EPL 84 4

    [12]

    Kondic L 2014 Granular Matter 16 2

    [13]

    Guariguata A, Pascall M A, Gilmer M W, Sum A K, Sloan E D, Koh C A, Wu D T 2012 Phys. Rev. E 86 6

    [14]

    Lin Y J, Fang C 2016 J. Mech. 32 6

    [15]

    Longjas A, Monterola C, Saloma C 2009 J. Statist. Mech. Theory and Experiment 2009 05006

    [16]

    Kunte A, Doshi P, Orpe A V 2014 Phys. Rev. E 90 2

    [17]

    Hong X, Kohne M, Weeks E R 2015 arXiv preprint

    [18]

    Zuriguel I, Garcimartin A, Maza D 2005 Phys. Rev. E 71 5

    [19]

    Mankoc C, Garcimartin A, Zuriguel I, Maza D 2009 Phys. Rev. E 80 1

    [20]

    Zuriguel I 2014 Papers in Physics 6 060014

    [21]

    Zuriguel I, Janda A, Garcimartin A, Lozano C, Arevalo R, Maza D 2011 Phys. Rev. Lett. 107 27

    [22]

    Lozano C, Janda A, Garcimartin A, Maza D, Zuriguel I 2012 Phys. Rev. E 86 3

    [23]

    Saraf S, Franklin S V 2011 Phys. Rev. E 83 3

    [24]

    Tian Y, Qi J, Lai J, Zhou Q, Yang L 2013 Proceedings of the Awareness Science and Technology and Ubi-Media Computing Aizu-Wakamatsu, Japan, November 2-4, 2013 p547

    [25]

    Tian Y, Zhang S, Lin P, Yang Q, Yang G, Yang L 2017 Comput. Chem. Engineer. 104 231

    [26]

    Snoeijer J H, van Hecke M, Somfai E, van Saarloos W 2003 Phys. Rev. E 67 3

  • [1]

    Peng Y J, Zhang Z, Wang Y, et al. 2012 Acta Phys. Sin. 61 134501 (in Chinese)[彭亚晶, 张卓, 王勇, 等 2012 物理学报 61 134501]

    [2]

    Xie X M, Jiang Y M, Wang H Y, et al. 2003 Acta Phys. Sin. 52 2194 (in Chinese)[谢晓明, 蒋亦民, 王焕友, 等 2003 物理学报 52 2194]

    [3]

    Lu K Q, Hou M Y, Jiang Z H, et al. 2012 Acta Phys. Sin. 61 119103 (in Chinese)[陆坤权, 厚美瑛, 姜泽辉, 等 2012 物理学报 61 119103]

    [4]

    Zuriguel I, Pugnaloni L A, Garcimartin A, Maza D 2003 Phys. Rev. E 68 3

    [5]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 17

    [6]

    Lu K, Liu J 2004 Physics 33 10 (in Chinese)[陆坤权, 刘寄星 2004 物理 33 10]

    [7]

    Zuriguel I, Parisi D R, Hidalgo R C, Lozano C, Janda A, Gago P A, Peralta J P, Ferrer L M, Pugnaloni L A, Clement E, Maza D, Pagonabarraga I, Garcimartin A 2014 Sci. Reports 4 7324

    [8]

    To K, Lai P Y, Pak H K 2001 Phys. Rev. Lett. 86 1

    [9]

    Masuda T, Nishinari K, Schadschneider A 2014 Phys. Rev. Lett. 112 13

    [10]

    To K W 2005 Phys. Rev. E 71 6

    [11]

    Janda A, Zuriguel I, Garcimartin A, Pugnaloni L A, Maza D 2008 EPL 84 4

    [12]

    Kondic L 2014 Granular Matter 16 2

    [13]

    Guariguata A, Pascall M A, Gilmer M W, Sum A K, Sloan E D, Koh C A, Wu D T 2012 Phys. Rev. E 86 6

    [14]

    Lin Y J, Fang C 2016 J. Mech. 32 6

    [15]

    Longjas A, Monterola C, Saloma C 2009 J. Statist. Mech. Theory and Experiment 2009 05006

    [16]

    Kunte A, Doshi P, Orpe A V 2014 Phys. Rev. E 90 2

    [17]

    Hong X, Kohne M, Weeks E R 2015 arXiv preprint

    [18]

    Zuriguel I, Garcimartin A, Maza D 2005 Phys. Rev. E 71 5

    [19]

    Mankoc C, Garcimartin A, Zuriguel I, Maza D 2009 Phys. Rev. E 80 1

    [20]

    Zuriguel I 2014 Papers in Physics 6 060014

    [21]

    Zuriguel I, Janda A, Garcimartin A, Lozano C, Arevalo R, Maza D 2011 Phys. Rev. Lett. 107 27

    [22]

    Lozano C, Janda A, Garcimartin A, Maza D, Zuriguel I 2012 Phys. Rev. E 86 3

    [23]

    Saraf S, Franklin S V 2011 Phys. Rev. E 83 3

    [24]

    Tian Y, Qi J, Lai J, Zhou Q, Yang L 2013 Proceedings of the Awareness Science and Technology and Ubi-Media Computing Aizu-Wakamatsu, Japan, November 2-4, 2013 p547

    [25]

    Tian Y, Zhang S, Lin P, Yang Q, Yang G, Yang L 2017 Comput. Chem. Engineer. 104 231

    [26]

    Snoeijer J H, van Hecke M, Somfai E, van Saarloos W 2003 Phys. Rev. E 67 3

  • [1] 李伟健, 周晓艳, 陆杭军. 无阀纳米泵中水流的反常堵塞. 物理学报, 2024, 73(9): 094702. doi: 10.7498/aps.73.20240115
    [2] 陈百慧, 施保昌, 汪垒, 柴振华. 基于GPU的二维梯形空腔流的格子Boltzmann模拟与分析. 物理学报, 2023, 72(15): 154701. doi: 10.7498/aps.72.20230430
    [3] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响. 物理学报, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [4] 张威, 胡林, 张兴刚. 双分散颗粒体系在临界堵塞态的结构特征. 物理学报, 2016, 65(2): 024502. doi: 10.7498/aps.65.024502
    [5] 郭空明, 江俊. Hénon映射的噪声诱导间歇现象及其临界值估算研究. 物理学报, 2014, 63(19): 190503. doi: 10.7498/aps.63.190503
    [6] 宋天明, 杨家敏. 三维柱腔内辐射输运的一维模拟. 物理学报, 2013, 62(1): 015210. doi: 10.7498/aps.62.015210
    [7] 潘伟, 余和军, 张晓光, 席丽霞. 高Q值二维光子晶体缺三腔的数值模拟与分析. 物理学报, 2012, 61(3): 034209. doi: 10.7498/aps.61.034209
    [8] 彭凯, 刘大刚, 廖臣, 刘盛纲. 三维电子回旋脉塞的数值模拟研究. 物理学报, 2011, 60(9): 091301. doi: 10.7498/aps.60.091301
    [9] 赵明, 郁伯铭. 基于分形多孔介质三维网络模型的非混溶两相流驱替数值模拟. 物理学报, 2011, 60(9): 098103. doi: 10.7498/aps.60.098103
    [10] 邹维科, 孔祥木, 王春阳, 高中扬. 三维钻石型等级晶格上量子Heisenberg系统的临界性质. 物理学报, 2010, 59(7): 4874-4879. doi: 10.7498/aps.59.4874
    [11] 潘诗琰, 朱鸣芳. 三维溶质枝晶生长数值模拟. 物理学报, 2009, 58(13): 278-S284. doi: 10.7498/aps.58.278
    [12] 王炜, 张琪昌, 王雪娇. 待定固有频率法在分析系统混沌临界值问题中的应用. 物理学报, 2009, 58(8): 5162-5168. doi: 10.7498/aps.58.5162
    [13] 黄群星, 刘 冬, 王 飞, 严建华, 池 涌, 岑可法. 基于截断奇异值分解的三维火焰温度场重建研究. 物理学报, 2007, 56(11): 6742-6748. doi: 10.7498/aps.56.6742
    [14] 陆杭军, 吴锋民. 非均匀基底上三维薄膜生长的模拟研究. 物理学报, 2006, 55(1): 424-429. doi: 10.7498/aps.55.424
    [15] 丁英涛, 何 枫, 姚朝晖, 沈孟育, 王学芳. 长微直管内气体低速流动的亚堵塞现象. 物理学报, 2004, 53(8): 2429-2433. doi: 10.7498/aps.53.2429
    [16] 邵元智, 蓝图, 林光明. 三维动态Ising模型中的非平衡相变:三临界点的存在. 物理学报, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [17] 彭景翠. 用闭合的高斯随机行走模拟二维与三维环形高聚物. 物理学报, 1994, 43(10): 1580-1586. doi: 10.7498/aps.43.1580
    [18] 季达人, 张剑波, 应和平. 三维随机点阵三态矢量Potts模型Monte Carlo模拟. 物理学报, 1992, 41(7): 1162-1166. doi: 10.7498/aps.41.1162
    [19] 魏成连, 董玉兰, 高之纬. Si{111}晶面粒子堵塞坑的新现象. 物理学报, 1980, 29(9): 1222-1225. doi: 10.7498/aps.29.1222
    [20] 陈昌, 魏成连, 董玉兰, 刘世杰, 夏广昌, 范景云, 王启良, 高之纬. Si,GaAs和LiNbO3单晶的堵塞效应. 物理学报, 1979, 28(3): 324-333. doi: 10.7498/aps.28.324
计量
  • 文章访问数:  6796
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-10
  • 修回日期:  2017-12-13
  • 刊出日期:  2019-02-20

/

返回文章
返回