搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频率可切换太赫兹涡旋波束产生器

仲敏 李九生

引用本文:
Citation:

频率可切换太赫兹涡旋波束产生器

仲敏, 李九生

Switchable frequency terahertz vortex beam generator

Zhong Min, Li Jiu-Sheng
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 已报道的太赫兹涡旋波束产生器大多数是在固定频率产生涡旋波束, 限制了它的实际应用场景. 本文提出一种频率可切换太赫兹涡旋波束超表面, 通过改变外部温度, 二氧化钒相态也随之改变, 该超表面可以实现在单频模式和双频模式的自由切换. 室温下, 所设计的超表面在频率1.1 THz处可以产生具有不同拓扑电荷数的涡旋波束, 而且它们的模式纯度均在 85%以上. 外部温度变为68 ℃时, 该超表面工作频率切换到两个频率点0.7和1.23 THz, 产生不同拓扑荷数的涡旋波束, 模式纯度均大于 60%. 设计的频率可切换太赫兹涡旋产生器为无线太赫兹通信中工作频率调制提供了一个新的设计思路.
    Most of the reported vortex beam generators generate vortex beams at a fixed frequency, which limits the practical applications. Therefore, it is inevitable to explore a vortex beam generator, which can actively control the operating frequency. We propose a switchable frequency terahertz vortex beam metasurface, it is freely switchable under single-frequency mode and dual-frequency mode by changing the external temperature, the phase state of vanadium dioxide (VO2) is also changeable. External temperature changes will cause VO2 to transform from insulating state to metallic state. Generally, VO2 conductivity can increase by several orders of magnitude as operating temperature changes. By using the phase change property of VO2, we can obtain a metasurface with switchable operating frequencies. For operating at room temperature, the proposed metasurface behaves as a single-frequency terahertz vortex generator. When (left-handed circularly polarized, LCP) terahertz wave is vertically incident on the metasurface, it generates vortex beams with different topological charge numbers at a frequency of 1.1 THz, and the mode purity is above 85%. The simulation results show that the mode purity of the vortex beam with the topological charge l = 1 is 90%, and the mode purity is about 91.1% for the vortex beam with l = 2, and 85.4% for the vortex beam with l = 3. When the external temperature is of 68 ℃, the designed metasurface becomes a dual-frequency vortex beam generator. At this time, the operating frequencies of vortex beams with different topological charges (l = 1, 2, 3) are 0.7 and 1.23 THz, whose mode purities are both above 60%. That is to say, the corresponding mode purities at topological charge with l = 1 for two operating frequencies are 89.1% and 71.6%, respectively. The mode purities are 83.2% and 94.4% with topological charge l = 2, respectively. The mode purities are 62.4% and 68.2% with topological charge l = 3, respectively. Therefore, the proposed switchable frequency terahertz vortex generator provides a new design idea for working frequency modulation in wireless terahertz communication.
      通信作者: 李九生, lijsh2008@126.com
    • 基金项目: 国家自然科学基金(批准号: 61871355, 61831012)、浙江省科技厅人才工程(批准号: 2018R52043)和浙江省重点研发项目(批准号: 2021C03153, 2022C03166)资助的课题.
      Corresponding author: Li Jiu-Sheng, lijsh2008@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871355, 61831012), the Talent Project of Department of Science and Technology of Zhejiang Province, China (Grant No. 2018R52043), and the Zhejiang Provincial Key R & D Project of China (Grant Nos. 2021C03153, 2022C03166).
    [1]

    Wang D, Li N N, Li Z S, Chen C, Lee B, Wang Q H 2022 Opt. Express 30 3157Google Scholar

    [2]

    Inoue K, Anand A, Cho M 2021 Opt. Lett. 46 1470Google Scholar

    [3]

    Yang Z B, Tang D Y, Hu J, Tang M J, Zhang M K, Cui H L, Wang L H, Chang C, Fan C H, Li J, Wang H B 2021 Small 17 2005814Google Scholar

    [4]

    Oda N 2010 C. R. Physique 11 496Google Scholar

    [5]

    Zhou J, Wang X M, Wang Y X, Huang G R, Yang X, Zhang Y, Xiong Y, Liu L, Zhao X, Fu W L 2021 Talanta 228 122213Google Scholar

    [6]

    Zhou Z, Cao Z J, Pi Y M 2018 Sensors 18 10Google Scholar

    [7]

    Han J Q, Li L, Yi H, Shi Y 2018 Opt. Mater. Express 8 3470Google Scholar

    [8]

    Bao L, Fu X J, Wu R Y, Ma Q, Cui T J 2021 Adv. Mater. Technol. 6 2001032Google Scholar

    [9]

    李晓楠, 周璐, 赵国 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [10]

    Li W Y, Zhao G Z, Meng T H, Sun R, Guo J Y 2021 Chin. Phys. B 30 058103Google Scholar

    [11]

    Zhang X D, Kong D P, Yuan Y, Mei S, Wang L L, Wang G X 2020 Opt. Commun. 465 125561Google Scholar

    [12]

    Tang S W, Li X K, Pan W K, Zhou J, Jiang T, Ding F 2019 Opt. Express 27 4281Google Scholar

    [13]

    Akram M R, Mehmood M Q, Bai X D, Jin R H, Premaratne M, Zhu W R 2019 Adv. Opt. Mater. 7 1801628Google Scholar

    [14]

    Liu KY, Wang G M, Cai T, Dai B J, Xia Y, Li H P, Guo W L 2019 J. Phys. D: Appl. Phys. 52 255002Google Scholar

    [15]

    Xin M B, Xie R S, Zhai G H, Gao J J, Zhang D J, Wang X, An S S, Zheng B W, Zhang H L, Ding J 2020 Opt. Express 28 17374Google Scholar

    [16]

    Xie J F, Guo H M, Zhuang S L, Hu J B 2021 Opt. Express 29 3081Google Scholar

    [17]

    Cheng K X, Hu Z D, Kong X L, Shen X P, Wang J C 2022 Opt. Commun. 507 127631Google Scholar

    [18]

    Ding F, Zhong S M, Bozhevolnyi S I 2018 Adv. Opt. Mater. 6 1701204Google Scholar

    [19]

    Liu X B, Wang Q, Zhang X Q, Li H, Xu Q, Xu Y H, Chen X Y, Li S X, Liu M, Tian Z, Zhang C H, Zou C W, Han J G, Zhang W L 2019 Adv. Opt. Mater. 7 1900175Google Scholar

    [20]

    Fan J P, Cheng Y Z 2020 J. Phys. D: Appl. Phys. 53 025109Google Scholar

    [21]

    Bi F, Ba Z L, Wang X 2018 Opt. Express 26 25693Google Scholar

    [22]

    Jiang S, Chen C, Zhang H L, Chen W D 2018 Opt. Express 26 6466Google Scholar

  • 图 1  频率可切换太赫兹涡旋波束调控示意图 (a) 25 ℃时, LCP波入射、RCP涡旋波输出; (b) 68 ℃时, LCP波入射、两个频率的RCP涡旋波输出

    Fig. 1.  Schematic diagram of switchable frequency terahertz vortex beam regulation: (a) At room temperature, the LCP wave incidence and RCP vortex wave output; (b) at 68 ℃, the LCP wave is incidence and RCP vortex wave output under two frequencies.

    图 2  不同温度下超表面单元结构的(a), (c)透射振幅和(b), (d)相位 (a), (b) 室温; (c), (d) 68 ℃

    Fig. 2.  (a), (c) Transmission amplitudes and (b), (d) phases of metasurface cell structure under different temperatures: (a), (b) Room temperature; (c), (d) 68 ℃.

    图 3  l = 1, 2, 3时, 频率可切换太赫兹涡旋波束超表面的(a)—(c)相位分布与(d)—(f)单元阵列排布 (a), (d) l = 1; (b), (e) l = 2; (c), (f) l = 3

    Fig. 3.  Phase distribution (a)–(c) and cell array arrangement (d)–(f) of switchable frequency terahertz vortex beam metasurface (l = 1, 2, 3): (a), (d) l = 1; (b), (e) l = 2; (c), (f) l = 3.

    图 4  室温下, f = 1.1 THz涡旋波束在不同拓扑荷数下的远场强度、远场相位、电场相位和振幅图 (a) l = 1; (b) l = 2; (c) l = 3

    Fig. 4.  At room temperature, far-field intensity, far-field phase, electric field phase and amplitude of vortex beam with different topological charges at a frequency of 1.1 THz: (a) l = 1; (b) l = 2; (c) l = 3.

    图 5  室温下, f = 1.1 THz涡旋波束在不同拓扑荷数下的模式纯度 (a) l = 1; (b) l = 2; (c) l = 3

    Fig. 5.  At room temperature, mode purity of vortex beam with different topological charges at a frequency of 1.1 THz: (a) l = 1; (b) l = 2; (c) l = 3.

    图 6  温度为68 ℃时, 拓扑荷数l = 1的涡旋波束的远场强度、远场相位、电场相位和振幅图 (a) f = 0.7 THz; (b) f = 1.23 THz

    Fig. 6.  Far-field intensity, far-field phase, electric field phase and amplitude of vortex beam with topological charge l = 1 at 68 ℃: (a) f = 0.7 THz; (b) f = 1.23 THz.

    图 7  温度为68 ℃时, 拓扑荷数l = 1的涡旋波束的模式纯度 (a) f = 0.7 THz; (b) f = 1.23 THz

    Fig. 7.  Mode purity of vortex beam with topological charge l = 1 at 68 ℃: (a) f = 0.7 THz; (b) f = 1.23 THz.

    图 8  温度为68 ℃时, 拓扑荷数l = 2的涡旋波束远场强度、远场相位、电场相位和振幅图 (a) f = 0.7 THz; (b) f = 1.23 THz

    Fig. 8.  Far-field intensity, far-field phase, electric field phase and amplitude of vortex beam with topological charge l = 2 at 68 ℃: (a) f = 0.7 THz; (b) f = 1.23 THz.

    图 9  68 ℃时, 拓扑荷数l = 2的涡旋波束的模式纯度 (a) f = 0.7 THz; (b) f = 1.23 THz

    Fig. 9.  Mode purity of vortex beam with topological charge l = 2 at 68 ℃: (a) f = 0.7 THz; (b) f = 1.23 THz.

    图 10  温度为68 ℃时, 拓扑荷数l = 3的涡旋波束远场强度、远场相位、电场相位和振幅图 (a) f = 0.7 THz; (b) f = 1.23 THz

    Fig. 10.  Far-field intensity, far-field phase, electric field phase and amplitude of vortex beam with topological charge l = 3 at 68 ℃: (a) f = 0.7 THz; (b) f = 1.23 THz.

    图 11  温度为68 ℃时, 拓扑荷数l = 3的涡旋波束的模式纯度 (a) f = 0.7 THz; (b) f = 1.23 THz

    Fig. 11.  Mode purity of vortex beam with topological charge l = 3 at 68 ℃: (a) f = 0.7 THz; (b) f = 1.23 THz.

  • [1]

    Wang D, Li N N, Li Z S, Chen C, Lee B, Wang Q H 2022 Opt. Express 30 3157Google Scholar

    [2]

    Inoue K, Anand A, Cho M 2021 Opt. Lett. 46 1470Google Scholar

    [3]

    Yang Z B, Tang D Y, Hu J, Tang M J, Zhang M K, Cui H L, Wang L H, Chang C, Fan C H, Li J, Wang H B 2021 Small 17 2005814Google Scholar

    [4]

    Oda N 2010 C. R. Physique 11 496Google Scholar

    [5]

    Zhou J, Wang X M, Wang Y X, Huang G R, Yang X, Zhang Y, Xiong Y, Liu L, Zhao X, Fu W L 2021 Talanta 228 122213Google Scholar

    [6]

    Zhou Z, Cao Z J, Pi Y M 2018 Sensors 18 10Google Scholar

    [7]

    Han J Q, Li L, Yi H, Shi Y 2018 Opt. Mater. Express 8 3470Google Scholar

    [8]

    Bao L, Fu X J, Wu R Y, Ma Q, Cui T J 2021 Adv. Mater. Technol. 6 2001032Google Scholar

    [9]

    李晓楠, 周璐, 赵国 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [10]

    Li W Y, Zhao G Z, Meng T H, Sun R, Guo J Y 2021 Chin. Phys. B 30 058103Google Scholar

    [11]

    Zhang X D, Kong D P, Yuan Y, Mei S, Wang L L, Wang G X 2020 Opt. Commun. 465 125561Google Scholar

    [12]

    Tang S W, Li X K, Pan W K, Zhou J, Jiang T, Ding F 2019 Opt. Express 27 4281Google Scholar

    [13]

    Akram M R, Mehmood M Q, Bai X D, Jin R H, Premaratne M, Zhu W R 2019 Adv. Opt. Mater. 7 1801628Google Scholar

    [14]

    Liu KY, Wang G M, Cai T, Dai B J, Xia Y, Li H P, Guo W L 2019 J. Phys. D: Appl. Phys. 52 255002Google Scholar

    [15]

    Xin M B, Xie R S, Zhai G H, Gao J J, Zhang D J, Wang X, An S S, Zheng B W, Zhang H L, Ding J 2020 Opt. Express 28 17374Google Scholar

    [16]

    Xie J F, Guo H M, Zhuang S L, Hu J B 2021 Opt. Express 29 3081Google Scholar

    [17]

    Cheng K X, Hu Z D, Kong X L, Shen X P, Wang J C 2022 Opt. Commun. 507 127631Google Scholar

    [18]

    Ding F, Zhong S M, Bozhevolnyi S I 2018 Adv. Opt. Mater. 6 1701204Google Scholar

    [19]

    Liu X B, Wang Q, Zhang X Q, Li H, Xu Q, Xu Y H, Chen X Y, Li S X, Liu M, Tian Z, Zhang C H, Zou C W, Han J G, Zhang W L 2019 Adv. Opt. Mater. 7 1900175Google Scholar

    [20]

    Fan J P, Cheng Y Z 2020 J. Phys. D: Appl. Phys. 53 025109Google Scholar

    [21]

    Bi F, Ba Z L, Wang X 2018 Opt. Express 26 25693Google Scholar

    [22]

    Jiang S, Chen C, Zhang H L, Chen W D 2018 Opt. Express 26 6466Google Scholar

  • [1] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面. 物理学报, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [2] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [3] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [4] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [5] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [6] 孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永. 自拉曼混频黄绿波段三波长可切换激光. 物理学报, 2020, 69(12): 124201. doi: 10.7498/aps.69.20200324
    [7] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [8] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [9] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [10] 崔彬, 杨玉平, 马品, 杨雪莹, 马俪文. 全介质光栅在太赫兹波段的光调控特性. 物理学报, 2016, 65(7): 074209. doi: 10.7498/aps.65.074209
    [11] 张耀利, 吴保卫, 王月娥, 韩晓霞. 切换奇异系统的有限时间稳定. 物理学报, 2014, 63(17): 170205. doi: 10.7498/aps.63.170205
    [12] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [13] 刘丰, 李毅, 石俊凯, 胡晓堃, 李江, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月. GaP波导型发射器产生频率可调谐太赫兹脉冲. 物理学报, 2012, 61(3): 034210. doi: 10.7498/aps.61.034210
    [14] 马新东, 毕勤胜. 切换电路系统的复杂行为及其机理. 物理学报, 2012, 61(24): 240506. doi: 10.7498/aps.61.240506
    [15] 刘扬正, 林长圣, 李心朝. 切换统一混沌系统族. 物理学报, 2011, 60(4): 040505. doi: 10.7498/aps.60.040505
    [16] 王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪峰, 童长江. 0.14 THz高功率太赫兹脉冲的频率测量. 物理学报, 2010, 59(12): 8459-8464. doi: 10.7498/aps.59.8459
    [17] 刘扬正, 姜长生. 关联可切换超混沌系统的构建与特性分析. 物理学报, 2009, 58(2): 771-778. doi: 10.7498/aps.58.771
    [18] 邓玉强, 郎利影, 邢岐荣, 曹士英, 于 靖, 徐 涛, 李 健, 熊利民, 王清月, 张志刚. Gabor小波分析太赫兹波时间-频率特性的研究. 物理学报, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
    [19] 刘扬正, 姜长生, 林长圣, 孙 晗. 四维切换超混沌系统. 物理学报, 2007, 56(9): 5131-5135. doi: 10.7498/aps.56.5131
    [20] 刘扬正, 姜长生, 林长圣, 熊 星, 石 磊. 一类切换混沌系统的实现. 物理学报, 2007, 56(6): 3107-3112. doi: 10.7498/aps.56.3107
计量
  • 文章访问数:  3820
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-07-14
  • 上网日期:  2022-10-22
  • 刊出日期:  2022-11-05

/

返回文章
返回