搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中能质子注量率测量

张艳文 郭刚 肖舒颜 殷倩 杨新宇

引用本文:
Citation:

中能质子注量率测量

张艳文, 郭刚, 肖舒颜, 殷倩, 杨新宇

Measurement of medium-energy proton flux

Zhang Yan-Wen, Guo Gang, Xiao Shu-Yan, Yin Qian, Yang Xin-Yu
PDF
HTML
导出引用
  • 质子是太空辐射环境中的主要粒子成分, 随着半导体工艺向着小尺寸高集成度方向不断发展, 质子单粒子效应不容忽视. 通过加速器模拟空间辐射进行地面实验是评价质子单粒子效应最重要的手段, 质子注量率的准确测量是器件考核评估过程中最关键的环节. 本文基于原子能院100MeV质子单粒子效应辐照装置, 突破了宽量程中能质子注量率测量技术, 开发了法拉第筒、塑料闪烁体探测器和二次电子发射监督器等探测工具, 可以对束流进行宽量程范围准确测量, 解决了质子注量率在106—107 p·cm–2·s–1范围内难以测量的关键难题, 并进行了注量率不确定度的分析研究, 同一注量率下法拉第筒和塑料闪烁体探测器的实验测量误差与理论分析误差相符. 对中能质子注量率测量达到了国际同类装置水平. 该研究建立的中能质子注量率测量系统和不确定度分析方法, 为准确评估元器件辐射效应奠定了基础.
    Proton is the main particle component in the space radiation environment. The proton single event effect cannot be ignored with the continuous development of semiconductor technology. Accelerator simulation is the most important method to evaluate the single event effect caused by proton radiation, and the accurate measurement of proton flux is the most critical aspect in the device evaluation process. The research is based on the 100 MeV proton single-event irradiation device of the Atomic Energy Institute, which breaks through the wide-range mid-energy proton fluence rate measurement technology. The detection tools are developed such as Faraday cup, plastic scintillator detectors and secondary electron emission monitors, which can be used for measuring the proton beam current in a wide range. Faraday cup and plastic scintillator detector can be used for measuring the high flux proton and the low flux proton, respectively. Secondary electron emission monitor can be used for conducting the online real-time measurement. The proton fluxes in a range of 106– 107 p·cm–2·s–1 are measured by using two separate detectors.The analysis of the fluence rate uncertainty is carried out. The uncertainty of measurement results mainly include three aspects: measurement method, measuring instrument and equipment, and repeatability of multiple measurement results. Here in this work, the Faraday cup is taken for example to analyze the uncertainty sources in the proton flux measurement. The measurement methods include the calculation of the collection efficiency of the Faraday cup (collection efficiency + escape rate = 1) and the calculation method of flux (flux = current/collection area). For the measuring instruments and equipment, mainly including 6517A and other electronic devices, their errors are determined by the accuracies of the instruments themselves. Repeatability of multiple measurement results mainly from the error caused by the instability of the accelerator beam output, the error caused by randomness of multiple measurement results, and the error given by the statistical method. The analysis shows that the uncertainty of flux measurement by Faraday cup is 7.26%, and the uncertainty of flux measurement by plastic scintillator detector is 1.64%.The flux measurement of the proton fluence rate has reached the level of similar devices in the world, filling the gap in this field in China. It has a certain reference and guiding significance for the follow-up study of medium- and high-energy proton beam measurement in China. The mid-energy proton flux measurement system and uncertainty analysis method established in this study lay the foundation for accurately evaluating the component radiation effects.
      通信作者: 张艳文, zhangyanwen415@163.com
    • 基金项目: 国家自然科学基金(批准号: 11805281)资助的课题
      Corresponding author: Zhang Yan-Wen, zhangyanwen415@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11805281).
    [1]

    Sawyer D M, Vette J I 1976 National Space Science Data Center Report NSSDC/WDC-A-R&S 76-06, NASA-GSFC TMS-72605

    [2]

    Heidel D F, Rodbell K P, Oldiges P, Gordon M S, Tang H H K, Cannon E H Plettner C 2006 IEEE Trans. Nucl. Sci. 53 3512Google Scholar

    [3]

    Bendel W L, Petersen E L 1983 IEEE Trans. Nucl. Sci. 30 4481Google Scholar

    [4]

    Ikeda N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200Google Scholar

    [5]

    Caron P, Inguimbert C, Artola L, Ecoffet R, Bezerra F 2019 IEEE Trans. Nucl. Sci. 66 1404Google Scholar

    [6]

    Von Przewoski B, Rinckel T, Manwaring W, Broxton G 2004 Radiation Effects Data Workshop 851 145

    [7]

    Hajdas W, Adams L, Nickson B, Zehnder A 1996 Nucl. Instrum. Methods B 113 54Google Scholar

    [8]

    Blackmore E 2000 IEEE Radiation Effects Data Workshop Rec. Reno, Nevada, USA, 2000 p1

    [9]

    罗尹虹, 张 凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞 2016 物理学报 65 068501Google Scholar

    Luo Y H, Zhang F Q, Wang Y P, Wang Y M, Guo X Q, Guo H X 2016 Acta Phys. Sin. 65 068501Google Scholar

    [10]

    何安林, 郭 刚, 陈力, 沈东军, 任义, 刘建成, 张志超, 蔡莉, 史淑廷, 王惠, 范辉, 高丽娟, 孔福全 2014 原子能科学技术 48 2364Google Scholar

    He A L, Guo G, Chen L, Shen D J, Ren Y, Liu J C, Zhang ZC, Cai L, Shi S T, Wang H, Fan H, Gao L J, Kong F Q 2014 Atom. Energ. Sci. Technol. 48 2364Google Scholar

    [11]

    杨海亮, 李国政, 李原春, 姜景和, 贺朝会, 唐本奇 2001 原子能科学技术 35 490Google Scholar

    Yang H L, Li G Z, Li Y C, Jiang J H, He C H, Tang B Q 2001 Atom. Energ. Sci. Technol. 35 490Google Scholar

    [12]

    韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文 2019 物理学报 68 054104Google Scholar

    Han J H, Guo G, Liu J C, Sui L, Kong F Q, Xiao S Y, Qin Y C, Zhang Y W 2019 Acta Phys. Sin. 68 054104Google Scholar

    [13]

    韩金华, 覃英参, 郭刚, 张艳文, 2020 物理学报 69 033401Google Scholar

    Han J H, Qin Y C, Guo G, Zhang Y W 2020 Acta Phys. Sin. 69 033401Google Scholar

    [14]

    Strehl P 2006 Beam Instrumentation and Diagnostics (Heidelberg: Springer-Verlag) pp1−438

    [15]

    Pages L, Bertel E, Joffre H, Sklavenitis L 1927 At. Data Nucl. Data Tables 4 1

    [16]

    郭忠言, 肖国青, 詹文龙, 徐瑚珊, 孙志宇, 李加兴, 王猛, 陈志强, 毛瑞士, 王武生, 白洁, 胡正国, 陈立新, 李琛 2003 高能物理与核物理 27 158Google Scholar

    Guo Z Y, Xiao G Q, Zhan W L, Xu H S, Sun Z Y, Li J X, Wang M, Chen Z Q, Mao R, S, Wang W S, Bai J, Hu Z G, Chen L X, Li C 2003 High Energy Phys. Nucl. 27 158Google Scholar

    [17]

    Johnson M B, McMahan M A, Gimpel T L, Tiffany W S 2006 Proceedings of the 2006 IEEE Radiation Effects Data Workshop Ponte Verdra Beach, Florida, USA 2006 p183

    [18]

    Murray K M, Stapor W J, Casteneda C 1989 Nucl. Instrum. Methods A 281 616Google Scholar

    [19]

    Castaneda C M 2001 Proceedings of the 2001 IEEE Radiation Effects Data Workshop Vancouver, Canada 2001 p77

    [20]

    Blackmore E W 2003 Proceedings of the 2003 IEEE Radiation Effects Data Workshop Monterey, California, USA 2003 p149

    [21]

    Przewoski B V, Rinckel T, Manwaring W, Broxton G, Chipara M, Ellis T, Hall E R, Kinser A 2004 Proceedings of the 2004 IEEE Radiation Effects Data Workshop Atlanta, Georiga, USA 2004 p145

  • 图 1  SRIM计算中能质子在不同材料中的射程

    Fig. 1.  Range of 30–90 MeV protons in C, Al, Fe and Cu calculated by SRIM.

    图 2  不同径深比情况下二次电子的溢出

    Fig. 2.  Overflow of secondary electrons with different diameter-depth ratios.

    图 3  30—90 MeV的质子在塑料闪烁体中的射程分布及能量沉积

    Fig. 3.  Range distribution and energy deposition of protons from 30 MeV to 90 MeV in plastic scintillators.

    图 4  法拉第筒、塑料闪烁体探测器和二次电子发射监督器束流测量系统示意图

    Fig. 4.  Schematic diagram of beam current measurement system for faraday cup, plastic scintillator detector and secondary electron emission monitor.

    图 5  法拉第筒对不同注量率质子束流测量

    Fig. 5.  Faraday cup measurement of proton beams with different flux.

    图 6  塑料闪烁体探测器的饱和偏压测试结果

    Fig. 6.  Saturation bias test results of plastic scintillator detector.

    图 7  相同注量率下法拉第筒与塑料闪烁体探测器测量结果比较

    Fig. 7.  Comparison of measurement results between faraday cup and plastic scintillator detector at the same flux.

    图 8  不同束流强度下二次电子发射监督器与法拉第筒测量值比例关系

    Fig. 8.  Scale ratio of secondary electron emission monitors and Faraday cup measurements at different beam intensities.

  • [1]

    Sawyer D M, Vette J I 1976 National Space Science Data Center Report NSSDC/WDC-A-R&S 76-06, NASA-GSFC TMS-72605

    [2]

    Heidel D F, Rodbell K P, Oldiges P, Gordon M S, Tang H H K, Cannon E H Plettner C 2006 IEEE Trans. Nucl. Sci. 53 3512Google Scholar

    [3]

    Bendel W L, Petersen E L 1983 IEEE Trans. Nucl. Sci. 30 4481Google Scholar

    [4]

    Ikeda N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200Google Scholar

    [5]

    Caron P, Inguimbert C, Artola L, Ecoffet R, Bezerra F 2019 IEEE Trans. Nucl. Sci. 66 1404Google Scholar

    [6]

    Von Przewoski B, Rinckel T, Manwaring W, Broxton G 2004 Radiation Effects Data Workshop 851 145

    [7]

    Hajdas W, Adams L, Nickson B, Zehnder A 1996 Nucl. Instrum. Methods B 113 54Google Scholar

    [8]

    Blackmore E 2000 IEEE Radiation Effects Data Workshop Rec. Reno, Nevada, USA, 2000 p1

    [9]

    罗尹虹, 张 凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞 2016 物理学报 65 068501Google Scholar

    Luo Y H, Zhang F Q, Wang Y P, Wang Y M, Guo X Q, Guo H X 2016 Acta Phys. Sin. 65 068501Google Scholar

    [10]

    何安林, 郭 刚, 陈力, 沈东军, 任义, 刘建成, 张志超, 蔡莉, 史淑廷, 王惠, 范辉, 高丽娟, 孔福全 2014 原子能科学技术 48 2364Google Scholar

    He A L, Guo G, Chen L, Shen D J, Ren Y, Liu J C, Zhang ZC, Cai L, Shi S T, Wang H, Fan H, Gao L J, Kong F Q 2014 Atom. Energ. Sci. Technol. 48 2364Google Scholar

    [11]

    杨海亮, 李国政, 李原春, 姜景和, 贺朝会, 唐本奇 2001 原子能科学技术 35 490Google Scholar

    Yang H L, Li G Z, Li Y C, Jiang J H, He C H, Tang B Q 2001 Atom. Energ. Sci. Technol. 35 490Google Scholar

    [12]

    韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文 2019 物理学报 68 054104Google Scholar

    Han J H, Guo G, Liu J C, Sui L, Kong F Q, Xiao S Y, Qin Y C, Zhang Y W 2019 Acta Phys. Sin. 68 054104Google Scholar

    [13]

    韩金华, 覃英参, 郭刚, 张艳文, 2020 物理学报 69 033401Google Scholar

    Han J H, Qin Y C, Guo G, Zhang Y W 2020 Acta Phys. Sin. 69 033401Google Scholar

    [14]

    Strehl P 2006 Beam Instrumentation and Diagnostics (Heidelberg: Springer-Verlag) pp1−438

    [15]

    Pages L, Bertel E, Joffre H, Sklavenitis L 1927 At. Data Nucl. Data Tables 4 1

    [16]

    郭忠言, 肖国青, 詹文龙, 徐瑚珊, 孙志宇, 李加兴, 王猛, 陈志强, 毛瑞士, 王武生, 白洁, 胡正国, 陈立新, 李琛 2003 高能物理与核物理 27 158Google Scholar

    Guo Z Y, Xiao G Q, Zhan W L, Xu H S, Sun Z Y, Li J X, Wang M, Chen Z Q, Mao R, S, Wang W S, Bai J, Hu Z G, Chen L X, Li C 2003 High Energy Phys. Nucl. 27 158Google Scholar

    [17]

    Johnson M B, McMahan M A, Gimpel T L, Tiffany W S 2006 Proceedings of the 2006 IEEE Radiation Effects Data Workshop Ponte Verdra Beach, Florida, USA 2006 p183

    [18]

    Murray K M, Stapor W J, Casteneda C 1989 Nucl. Instrum. Methods A 281 616Google Scholar

    [19]

    Castaneda C M 2001 Proceedings of the 2001 IEEE Radiation Effects Data Workshop Vancouver, Canada 2001 p77

    [20]

    Blackmore E W 2003 Proceedings of the 2003 IEEE Radiation Effects Data Workshop Monterey, California, USA 2003 p149

    [21]

    Przewoski B V, Rinckel T, Manwaring W, Broxton G, Chipara M, Ellis T, Hall E R, Kinser A 2004 Proceedings of the 2004 IEEE Radiation Effects Data Workshop Atlanta, Georiga, USA 2004 p145

  • [1] 陈翠红, 李占奎, 王秀华, 李荣华, 方芳, 王柱生, 李海霞. 高性能PIN-硅探测器的研制及其在高能放射性核束实验中的应用测试. 物理学报, 2023, 72(12): 122902. doi: 10.7498/aps.72.20230213
    [2] 范佳锟, 王洁, 高勇, 游志明, 王盛, 张静, 胡耀程, 许章炼, 王斌. 超级质子-质子对撞机中束流热屏的热-结构耦合模拟分析. 物理学报, 2021, 70(1): 012901. doi: 10.7498/aps.70.20200830
    [3] 苏兆锋, 来定国, 邱孟通, 徐启福, 任书庆. 脉冲硬X射线能注量测量技术. 物理学报, 2020, 69(14): 145202. doi: 10.7498/aps.69.20191700
    [4] 赵磊, 徐妙华, 张翌航, 张喆, 朱保君, 姜炜曼, 张笑鹏, 赵旭, 仝博伟, 贺书凯, 卢峰, 吴玉迟, 周维民, 张发强, 周凯南, 谢娜, 黄征, 仲佳勇, 谷渝秋, 李玉同, 李英骏. 利用气泡探测器测量激光快中子. 物理学报, 2018, 67(22): 222101. doi: 10.7498/aps.67.20181035
    [5] 颜冰, 黄思训, 冯径. 大气边界层模式中随机参数的反演与不确定性分析. 物理学报, 2018, 67(19): 199201. doi: 10.7498/aps.67.20181014
    [6] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响. 物理学报, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [7] 张伟, 张合, 陈勇, 张祥金, 徐孝彬. 脉冲激光四象限探测器测角不确定性统计分布. 物理学报, 2017, 66(1): 012901. doi: 10.7498/aps.66.012901
    [8] 邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. 低能质子束在氢等离子体中的能损研究. 物理学报, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [9] 尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏. 透射光栅谱仪测谱不确定度分析. 物理学报, 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [10] 张蔚泓, 牛中明, 王枫, 龚孝波, 孙保华. 宇宙核时钟不确定度的研究. 物理学报, 2012, 61(11): 112601. doi: 10.7498/aps.61.112601
    [11] 周林, 蒋世伦, 祁建敏, 王立宗. 反冲质子磁分析技术用于氘氚中子能谱测量研究. 物理学报, 2012, 61(7): 072902. doi: 10.7498/aps.61.072902
    [12] 李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩. 神光Ⅱ激光装置黑腔辐射温度定量研究. 物理学报, 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [13] 张忠兵, 欧阳晓平, 夏海鸿, 陈亮, 王群书, 王兰, 马彦良, 潘洪波, 刘林月. 高能质子束流强度绝对测量的二次电子补偿原理研究. 物理学报, 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [14] 段晓礁, 谭志新, 兰小飞, 黄永盛, 郭士伦, 杨大为, 汤秀章, 王乃彦. 用20—1020 keV单能质子刻度CR-39固体核径迹探测器. 物理学报, 2010, 59(5): 3147-3153. doi: 10.7498/aps.59.3147
    [15] 侯立飞, 李芳, 袁永腾, 杨国洪, 刘慎业. 化学气相沉积金刚石探测器测量软X射线能谱. 物理学报, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [16] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究. 物理学报, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [17] 钟国强, 胡立群, 朱玉宝, 林士耀, 陈珏铨, 许平, 段艳敏, 卢洪伟. HT-7上氘等离子体放电时中子注量的测量与分析. 物理学报, 2009, 58(5): 3262-3267. doi: 10.7498/aps.58.3262
    [18] 李 园, 李 刚, 张玉驰, 王晓勇, 王军民, 张天才. 计数率和分辨时间对光场统计性质测量的影响——单探测器直接测量的实验分析. 物理学报, 2006, 55(11): 5779-5783. doi: 10.7498/aps.55.5779
    [19] 雷家荣, 袁永刚, 赵 林, 赵敏智, 崔高显. 快中子堆n,γ混合场中γ光子注量的测量研究. 物理学报, 2003, 52(1): 53-57. doi: 10.7498/aps.52.53
    [20] 陈继述. 红外薄膜热电探测器分析. 物理学报, 1974, 23(6): 51-58. doi: 10.7498/aps.23.51
计量
  • 文章访问数:  5917
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 修回日期:  2021-09-01
  • 上网日期:  2021-09-10
  • 刊出日期:  2022-01-05

/

返回文章
返回