-
将单一折射率的石英裸光纤植入由聚二甲基硅氧烷构成的基片微流道中, 以低折射率的罗丹明B (RhB)和吡啶821 (LDS821)乙醇溶液构成的供体和受体对作为激光增益介质. 采用沿光纤轴向消逝波抽运方式, 首先以波长为532 nm的连续波激光器作为激励光, 对荧光共振能量转移特性参数进行了研究. 然后以波长为532 nm的脉冲激光器作为抽运光, 通过直接激励供体分子RhB, 并将其能量转移给临近的受体分子LDS821, 在不改变抽运光波长的条件下, 实现了较低阈值(1.26
${\text{μ}}{\rm J}$ /mm2)的受体LDS821激光辐射.A bare quartz fiber with single refractive index is implanted into a polydimethylsiloxane (PDMS) microfluidic channel. The lasing gain medium consists of fluorescence resonance energy transfer (FRET) donor-acceptor dye pair Rhodamine B (RhB)-LDS821 mixture solution, which has a lower refractive index than that of the optical fiber and flows in the PDMS microfluidic channel. The circular cross section of the optical fiber forms a ring resonator and hosts high-quality (Q) whispering gallery modes (WGMs). Pumping along the optical fiber axis, the FRET characteristic parameters, i.e., the FRET efficiency$\eta $ and the Förster distance R0 of donor-acceptor dye pair, are firstly studied by using a continuous wave laser as a pump light source with a wavelength of 532 nm. The excited states are thencreated in the donor (RhB) by using a pulse laser with a wavelength of 532 nm and whose energy is transferred into the adjacent acceptor (LDS821) through the non-radiative FRET mechanism. Finaly, the emission of LDS821 iscoupled into the WGM of the ring resonator to lase. Due to the high energy transfer efficiency and high Q-factor, the acceptor shows a lasing threshold as low as 1.26${\text{μ}}{\rm J}$ /mm2.[1] Li Z, Psaltis D 2008 Microfluid. Nanofluid. 4 145Google Scholar
[2] Holger S, Aaron R H 2011 Nat. Photon. 5 598Google Scholar
[3] Chen Q, Zhang X, Sun Y, Ritt M, Sivaramakrishnan S, Fan X 2013 Lab on a Chip 13 2679Google Scholar
[4] Wang C S, Chang T Y, Lin T Y, Chen Y F 2014 Sci. Reports 4 6736
[5] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥 2017 物理学报 66 074209Google Scholar
Li J, Li M M, Sun L P, Fan P C, Ran Y, Jin L, Guan B O 2017 Acta Phys. Sin. 66 074209Google Scholar
[6] Mellors J S, Jorabchi K, Smith L M, Ramsey M 2010 Anal. Chem. 82 967Google Scholar
[7] Vahala K J 2003 Nature 424 839Google Scholar
[8] Humar M, Yun S H 2015 Nat. Photon. 27 572
[9] Zhang Y X, Meng W D, Yang H Y, Pu X Y 2015 Opt. Lett. 40 5101Google Scholar
[10] Cerdán L, Enciso E, Martín V 2012 Nat. Photon. 6 621Google Scholar
[11] Förster T 1959 Discuss Faraday Soc. 27 7Google Scholar
[12] Ozelci E, Aas M, Jonas A, Kiraz A 2014 Laser Phys. Lett. 11 045802Google Scholar
[13] Armstrong R L, Xie J G, Ruekgauer T E 1992 Opt. Lett. 17 943Google Scholar
[14] Maslov V V 2008 4th International Conference on Advance Optoelectronics & Lasers Alushta, Crimea, Ukraine, September 29–October 4, 2008 p366
[15] Shopova S I, Cupps J M, Zhang P, Henderson E P, Lacey S, Fan X D 2008 Opt. Express 15 12735Google Scholar
[16] Sun Y, Shopova S I, Wu C S 2010 Proc. Natl. Sci. Acad. USA 107 16039Google Scholar
[17] Zhang Y X, Pu X Y , Zhu K, Feng L 2011 J. Opt. Soc. Am. B 28 2048Google Scholar
[18] Sahoo H 2011 J. Photochem.Photobiol. C: Photochem. Rev. 12 20Google Scholar
[19] Brackmann U 2000 Goettingen Lambda Physik Gmbh 1
[20] Stryer L, Haugland R P 1967 Proc. Natl. Sci. Acad. USA 58 719Google Scholar
[21] Li Z, Psaltis D 2007 J. Sel. Top. Quantum Electron. 13 185Google Scholar
[22] Zhang Y X, Pu X Y, Feng L, Han D Y, Ren Y T 2013 Opt. Express 21 12617Google Scholar
[23] Bene L, Ungvári T, Fedor R, Damjanovich L 2014 Biochim. Biophys. Acta 1843 3047Google Scholar
[24] Du J, Zhu T, Ma W, Cao W, Gu Q, Fan J, Peng X 2017 Ind. Eng. Chem. Res. 56 10591Google Scholar
-
图 5 (a) 以RhB和LDS821分别作为能量供体和能量受体的归一化荧光辐射光谱, A/D为受体与供体浓度比值, 图中“A/D = 1.0/0 mM”表示没有供体时受体的辐射光谱, 其他值表示固定供体浓度为0.5 mM, 不同受体浓度所对应的FRET光谱, 插图为微流道中荧光辐射的实物图; (b)红色三角形是根据图5(a)计算得到的能量转移效率
$\eta $ 随A/D变化关系的实验值, 实线是根据(1)式得到的理论值Fig. 5. (a) Normalized fluorescence spectra of RhB (donor) and LDS821 (acceptor); A/D, acceptor to donor ratio, A/D = 1.0/0 mM was collected for 1.0 mM acceptor in the absence of donor and the other spectra were collected for a constant donor concentration of 0.5 mM and the acceptor concentration changing from 0 to 8 mM; inset, the picture of fluorescent radiation generated in the PDMS microfluidic channel; (b) the red triangle is the experimental value of the energy transfer efficiency
$\eta $ as a function of A/D calculated from Fig. 5(a), and the solid line is the theoretical value calculted by formula (1).图 6 (a)不同A/D值对应的低等分辨率(光栅密度g = 150 g/mm)的FRET激光光谱, 供体浓度保持0.5 mM不变; (b)激光辐射峰强度随抽运光能量密度的变化关系; 供体峰值为585 nm, 阈值约为0.48
${\text{μ}}{\rm J}$ /mm2; A/D = 8/0.5 mM和A/D = 8/0 mM的LDS821的峰值均为822 nm, 其阈值分别为1.26${\text{μ}}{\rm J}$ /mm2和1.69${\text{μ}}{\rm J}$ /mm2Fig. 6. (a) Low resolution (grating density = 150 g/mm) FRET lasing spectra for various A/D values, the donor concentration is fixed at 0.5 mM; (b) lasing peak intensity vs. pump energy density. The donor peak is at 585 nm and its lasing threshold is approximately 0.48
${\text{μ}}{\rm J}$ /mm2. The peaks of LDS821 for A/D = 8/0.5 mM and A/D = 8/0 mM are at 822 nm and their lasing threshold is approximately 1.26${\text{μ}}{\rm J}$ /mm2 and 1.69${\text{μ}}{\rm J}$ /mm2, respetively.图 7 不同A/D值对应的中等分辨率(光栅密度g = 1200 g/mm)的激光光谱 光谱图从上到下分别对应A/D = 0/0.5, 0.5/0.5, 1/0.5, 4/0.5, 8/0.5 mM; (a) RhB(供体)的激光光谱; (b) LDS821(受体)的激光光谱
Fig. 7. Medium resolution (grating density = 1200 g/mm) lasing spectra for various A/D values. The spectra correspond to A/D = 0/0.5, 0.5/0.5, 1/0.5, 4/0.5, 8/0.5 mM from top to bottom: (a) Lasing spectra of RhB (donor); (b) lasing spectra of LDS821 (acceptor).
-
[1] Li Z, Psaltis D 2008 Microfluid. Nanofluid. 4 145Google Scholar
[2] Holger S, Aaron R H 2011 Nat. Photon. 5 598Google Scholar
[3] Chen Q, Zhang X, Sun Y, Ritt M, Sivaramakrishnan S, Fan X 2013 Lab on a Chip 13 2679Google Scholar
[4] Wang C S, Chang T Y, Lin T Y, Chen Y F 2014 Sci. Reports 4 6736
[5] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥 2017 物理学报 66 074209Google Scholar
Li J, Li M M, Sun L P, Fan P C, Ran Y, Jin L, Guan B O 2017 Acta Phys. Sin. 66 074209Google Scholar
[6] Mellors J S, Jorabchi K, Smith L M, Ramsey M 2010 Anal. Chem. 82 967Google Scholar
[7] Vahala K J 2003 Nature 424 839Google Scholar
[8] Humar M, Yun S H 2015 Nat. Photon. 27 572
[9] Zhang Y X, Meng W D, Yang H Y, Pu X Y 2015 Opt. Lett. 40 5101Google Scholar
[10] Cerdán L, Enciso E, Martín V 2012 Nat. Photon. 6 621Google Scholar
[11] Förster T 1959 Discuss Faraday Soc. 27 7Google Scholar
[12] Ozelci E, Aas M, Jonas A, Kiraz A 2014 Laser Phys. Lett. 11 045802Google Scholar
[13] Armstrong R L, Xie J G, Ruekgauer T E 1992 Opt. Lett. 17 943Google Scholar
[14] Maslov V V 2008 4th International Conference on Advance Optoelectronics & Lasers Alushta, Crimea, Ukraine, September 29–October 4, 2008 p366
[15] Shopova S I, Cupps J M, Zhang P, Henderson E P, Lacey S, Fan X D 2008 Opt. Express 15 12735Google Scholar
[16] Sun Y, Shopova S I, Wu C S 2010 Proc. Natl. Sci. Acad. USA 107 16039Google Scholar
[17] Zhang Y X, Pu X Y , Zhu K, Feng L 2011 J. Opt. Soc. Am. B 28 2048Google Scholar
[18] Sahoo H 2011 J. Photochem.Photobiol. C: Photochem. Rev. 12 20Google Scholar
[19] Brackmann U 2000 Goettingen Lambda Physik Gmbh 1
[20] Stryer L, Haugland R P 1967 Proc. Natl. Sci. Acad. USA 58 719Google Scholar
[21] Li Z, Psaltis D 2007 J. Sel. Top. Quantum Electron. 13 185Google Scholar
[22] Zhang Y X, Pu X Y, Feng L, Han D Y, Ren Y T 2013 Opt. Express 21 12617Google Scholar
[23] Bene L, Ungvári T, Fedor R, Damjanovich L 2014 Biochim. Biophys. Acta 1843 3047Google Scholar
[24] Du J, Zhu T, Ma W, Cao W, Gu Q, Fan J, Peng X 2017 Ind. Eng. Chem. Res. 56 10591Google Scholar
计量
- 文章访问数: 8730
- PDF下载量: 74
- 被引次数: 0