搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚二甲基硅氧烷微流道中光流控荧光共振能量转移激光

李东阳 张远宪 欧永雄 普小云

引用本文:
Citation:

聚二甲基硅氧烷微流道中光流控荧光共振能量转移激光

李东阳, 张远宪, 欧永雄, 普小云

Optofluidic fluorescence resonance energy transfer lasing in a polydimethylsiloxane microfluidic channel

Li Dong-Yang, Zhang Yuan-Xian, Ou Yong-Xiong, Pu Xiao-Yun
PDF
HTML
导出引用
  • 将单一折射率的石英裸光纤植入由聚二甲基硅氧烷构成的基片微流道中, 以低折射率的罗丹明B (RhB)和吡啶821 (LDS821)乙醇溶液构成的供体和受体对作为激光增益介质. 采用沿光纤轴向消逝波抽运方式, 首先以波长为532 nm的连续波激光器作为激励光, 对荧光共振能量转移特性参数进行了研究. 然后以波长为532 nm的脉冲激光器作为抽运光, 通过直接激励供体分子RhB, 并将其能量转移给临近的受体分子LDS821, 在不改变抽运光波长的条件下, 实现了较低阈值(1.26 ${\text{μ}}{\rm J}$/mm2)的受体LDS821激光辐射.
    A bare quartz fiber with single refractive index is implanted into a polydimethylsiloxane (PDMS) microfluidic channel. The lasing gain medium consists of fluorescence resonance energy transfer (FRET) donor-acceptor dye pair Rhodamine B (RhB)-LDS821 mixture solution, which has a lower refractive index than that of the optical fiber and flows in the PDMS microfluidic channel. The circular cross section of the optical fiber forms a ring resonator and hosts high-quality (Q) whispering gallery modes (WGMs). Pumping along the optical fiber axis, the FRET characteristic parameters, i.e., the FRET efficiency $\eta $ and the Förster distance R0 of donor-acceptor dye pair, are firstly studied by using a continuous wave laser as a pump light source with a wavelength of 532 nm. The excited states are thencreated in the donor (RhB) by using a pulse laser with a wavelength of 532 nm and whose energy is transferred into the adjacent acceptor (LDS821) through the non-radiative FRET mechanism. Finaly, the emission of LDS821 iscoupled into the WGM of the ring resonator to lase. Due to the high energy transfer efficiency and high Q-factor, the acceptor shows a lasing threshold as low as 1.26 ${\text{μ}}{\rm J}$/mm2.
      通信作者: 普小云, xypu@163.com
    • 基金项目: 国家自然科学基金(批准号: 11864045, 11404282, 61465014, 61465015)、云南省中青年学术和技术带头人(后备人才)(批准号: 2018HB029)和国家留学基金资助的课题.
      Corresponding author: Pu Xiao-Yun, xypu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11864045, 11404282, 61465014, 61465015), the Young and Middle-aged Academic and Technical Leaders (Reserve Talent) in Yunnan Province, China (Grant No. 2018HB029), and the China Scholarship Council (CSC) Foundation.
    [1]

    Li Z, Psaltis D 2008 Microfluid. Nanofluid. 4 145Google Scholar

    [2]

    Holger S, Aaron R H 2011 Nat. Photon. 5 598Google Scholar

    [3]

    Chen Q, Zhang X, Sun Y, Ritt M, Sivaramakrishnan S, Fan X 2013 Lab on a Chip 13 2679Google Scholar

    [4]

    Wang C S, Chang T Y, Lin T Y, Chen Y F 2014 Sci. Reports 4 6736

    [5]

    李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥 2017 物理学报 66 074209Google Scholar

    Li J, Li M M, Sun L P, Fan P C, Ran Y, Jin L, Guan B O 2017 Acta Phys. Sin. 66 074209Google Scholar

    [6]

    Mellors J S, Jorabchi K, Smith L M, Ramsey M 2010 Anal. Chem. 82 967Google Scholar

    [7]

    Vahala K J 2003 Nature 424 839Google Scholar

    [8]

    Humar M, Yun S H 2015 Nat. Photon. 27 572

    [9]

    Zhang Y X, Meng W D, Yang H Y, Pu X Y 2015 Opt. Lett. 40 5101Google Scholar

    [10]

    Cerdán L, Enciso E, Martín V 2012 Nat. Photon. 6 621Google Scholar

    [11]

    Förster T 1959 Discuss Faraday Soc. 27 7Google Scholar

    [12]

    Ozelci E, Aas M, Jonas A, Kiraz A 2014 Laser Phys. Lett. 11 045802Google Scholar

    [13]

    Armstrong R L, Xie J G, Ruekgauer T E 1992 Opt. Lett. 17 943Google Scholar

    [14]

    Maslov V V 2008 4th International Conference on Advance Optoelectronics & Lasers Alushta, Crimea, Ukraine, September 29–October 4, 2008 p366

    [15]

    Shopova S I, Cupps J M, Zhang P, Henderson E P, Lacey S, Fan X D 2008 Opt. Express 15 12735Google Scholar

    [16]

    Sun Y, Shopova S I, Wu C S 2010 Proc. Natl. Sci. Acad. USA 107 16039Google Scholar

    [17]

    Zhang Y X, Pu X Y , Zhu K, Feng L 2011 J. Opt. Soc. Am. B 28 2048Google Scholar

    [18]

    Sahoo H 2011 J. Photochem.Photobiol. C: Photochem. Rev. 12 20Google Scholar

    [19]

    Brackmann U 2000 Goettingen Lambda Physik Gmbh 1

    [20]

    Stryer L, Haugland R P 1967 Proc. Natl. Sci. Acad. USA 58 719Google Scholar

    [21]

    Li Z, Psaltis D 2007 J. Sel. Top. Quantum Electron. 13 185Google Scholar

    [22]

    Zhang Y X, Pu X Y, Feng L, Han D Y, Ren Y T 2013 Opt. Express 21 12617Google Scholar

    [23]

    Bene L, Ungvári T, Fedor R, Damjanovich L 2014 Biochim. Biophys. Acta 1843 3047Google Scholar

    [24]

    Du J, Zhu T, Ma W, Cao W, Gu Q, Fan J, Peng X 2017 Ind. Eng. Chem. Res. 56 10591Google Scholar

  • 图 1  PDMS芯片结构示意图

    Fig. 1.  Structure diagram of the PDMS chip.

    图 2  实验装置图 BS, 分束镜; PM, 激光能量计; L1, L2, L3表示透镜; 插图为激光产生的原理图, Ep表示 抽运光的消逝场, Ew表示WGM的消逝场

    Fig. 2.  Illustration of the experimental setup. BS, beam splite; PM, power meter; L1, L2, L3, lens. Inset: the schematic diagram of laser: Ep, evanescent field of pump light; Ew, evanescent field of WGM.

    图 3  不同RhB浓度对应的激光阈值, 误差线是三次测量的平均值

    Fig. 3.  Lasing threshold of RhB as a function of the dye concentration. Error bars are obtained with three measurements.

    图 4  归一化吸收和辐射光谱 蓝色和紫色实线分别表示RhB和LDS821的吸收光谱; 绿色和红色实线分别表示RhB和LDS821的辐射光谱

    Fig. 4.  Normalized absorption (blue, RhB; purple, LDS821) and emission (green, RhB; red, LDS821) spectra.

    图 5  (a) 以RhB和LDS821分别作为能量供体和能量受体的归一化荧光辐射光谱, A/D为受体与供体浓度比值, 图中“A/D = 1.0/0 mM”表示没有供体时受体的辐射光谱, 其他值表示固定供体浓度为0.5 mM, 不同受体浓度所对应的FRET光谱, 插图为微流道中荧光辐射的实物图; (b)红色三角形是根据图5(a)计算得到的能量转移效率$\eta $A/D变化关系的实验值, 实线是根据(1)式得到的理论值

    Fig. 5.  (a) Normalized fluorescence spectra of RhB (donor) and LDS821 (acceptor); A/D, acceptor to donor ratio, A/D = 1.0/0 mM was collected for 1.0 mM acceptor in the absence of donor and the other spectra were collected for a constant donor concentration of 0.5 mM and the acceptor concentration changing from 0 to 8 mM; inset, the picture of fluorescent radiation generated in the PDMS microfluidic channel; (b) the red triangle is the experimental value of the energy transfer efficiency $\eta $ as a function of A/D calculated from Fig. 5(a), and the solid line is the theoretical value calculted by formula (1).

    图 6  (a)不同A/D值对应的低等分辨率(光栅密度g = 150 g/mm)的FRET激光光谱, 供体浓度保持0.5 mM不变; (b)激光辐射峰强度随抽运光能量密度的变化关系; 供体峰值为585 nm, 阈值约为0.48 ${\text{μ}}{\rm J}$/mm2; A/D = 8/0.5 mM和A/D = 8/0 mM的LDS821的峰值均为822 nm, 其阈值分别为1.26 ${\text{μ}}{\rm J}$/mm2和1.69 ${\text{μ}}{\rm J}$/mm2

    Fig. 6.  (a) Low resolution (grating density = 150 g/mm) FRET lasing spectra for various A/D values, the donor concentration is fixed at 0.5 mM; (b) lasing peak intensity vs. pump energy density. The donor peak is at 585 nm and its lasing threshold is approximately 0.48 ${\text{μ}}{\rm J}$/mm2. The peaks of LDS821 for A/D = 8/0.5 mM and A/D = 8/0 mM are at 822 nm and their lasing threshold is approximately 1.26 ${\text{μ}}{\rm J}$/mm2 and 1.69 ${\text{μ}}{\rm J}$/mm2, respetively.

    图 7  不同A/D值对应的中等分辨率(光栅密度g = 1200 g/mm)的激光光谱 光谱图从上到下分别对应A/D = 0/0.5, 0.5/0.5, 1/0.5, 4/0.5, 8/0.5 mM; (a) RhB(供体)的激光光谱; (b) LDS821(受体)的激光光谱

    Fig. 7.  Medium resolution (grating density = 1200 g/mm) lasing spectra for various A/D values. The spectra correspond to A/D = 0/0.5, 0.5/0.5, 1/0.5, 4/0.5, 8/0.5 mM from top to bottom: (a) Lasing spectra of RhB (donor); (b) lasing spectra of LDS821 (acceptor).

  • [1]

    Li Z, Psaltis D 2008 Microfluid. Nanofluid. 4 145Google Scholar

    [2]

    Holger S, Aaron R H 2011 Nat. Photon. 5 598Google Scholar

    [3]

    Chen Q, Zhang X, Sun Y, Ritt M, Sivaramakrishnan S, Fan X 2013 Lab on a Chip 13 2679Google Scholar

    [4]

    Wang C S, Chang T Y, Lin T Y, Chen Y F 2014 Sci. Reports 4 6736

    [5]

    李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥 2017 物理学报 66 074209Google Scholar

    Li J, Li M M, Sun L P, Fan P C, Ran Y, Jin L, Guan B O 2017 Acta Phys. Sin. 66 074209Google Scholar

    [6]

    Mellors J S, Jorabchi K, Smith L M, Ramsey M 2010 Anal. Chem. 82 967Google Scholar

    [7]

    Vahala K J 2003 Nature 424 839Google Scholar

    [8]

    Humar M, Yun S H 2015 Nat. Photon. 27 572

    [9]

    Zhang Y X, Meng W D, Yang H Y, Pu X Y 2015 Opt. Lett. 40 5101Google Scholar

    [10]

    Cerdán L, Enciso E, Martín V 2012 Nat. Photon. 6 621Google Scholar

    [11]

    Förster T 1959 Discuss Faraday Soc. 27 7Google Scholar

    [12]

    Ozelci E, Aas M, Jonas A, Kiraz A 2014 Laser Phys. Lett. 11 045802Google Scholar

    [13]

    Armstrong R L, Xie J G, Ruekgauer T E 1992 Opt. Lett. 17 943Google Scholar

    [14]

    Maslov V V 2008 4th International Conference on Advance Optoelectronics & Lasers Alushta, Crimea, Ukraine, September 29–October 4, 2008 p366

    [15]

    Shopova S I, Cupps J M, Zhang P, Henderson E P, Lacey S, Fan X D 2008 Opt. Express 15 12735Google Scholar

    [16]

    Sun Y, Shopova S I, Wu C S 2010 Proc. Natl. Sci. Acad. USA 107 16039Google Scholar

    [17]

    Zhang Y X, Pu X Y , Zhu K, Feng L 2011 J. Opt. Soc. Am. B 28 2048Google Scholar

    [18]

    Sahoo H 2011 J. Photochem.Photobiol. C: Photochem. Rev. 12 20Google Scholar

    [19]

    Brackmann U 2000 Goettingen Lambda Physik Gmbh 1

    [20]

    Stryer L, Haugland R P 1967 Proc. Natl. Sci. Acad. USA 58 719Google Scholar

    [21]

    Li Z, Psaltis D 2007 J. Sel. Top. Quantum Electron. 13 185Google Scholar

    [22]

    Zhang Y X, Pu X Y, Feng L, Han D Y, Ren Y T 2013 Opt. Express 21 12617Google Scholar

    [23]

    Bene L, Ungvári T, Fedor R, Damjanovich L 2014 Biochim. Biophys. Acta 1843 3047Google Scholar

    [24]

    Du J, Zhu T, Ma W, Cao W, Gu Q, Fan J, Peng X 2017 Ind. Eng. Chem. Res. 56 10591Google Scholar

  • [1] 沈元毅, 雷鹏, 王新兵, 左都罗. He/Ar/Kr光泵稀有气体激光介质中的Ar-Kr共振能量转移. 物理学报, 2023, 72(19): 195201. doi: 10.7498/aps.72.20230956
    [2] 樊秦凯, 杨晨光, 胡书新, 徐春华, 李明, 陆颖. 基于热还原氧化石墨烯的单分子表面诱导荧光衰逝技术. 物理学报, 2023, 72(14): 147801. doi: 10.7498/aps.72.20230450
    [3] 罗泽伟, 武戈, 陈挚, 邓驰楠, 万蓉, 杨涛, 庄正飞, 陈同生. 双通道结构光照明超分辨定量荧光共振能量转移成像系统. 物理学报, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [4] 贾棋, 樊秦凯, 侯文清, 杨晨光, 王利邦, 王浩, 徐春华, 李明, 陆颖. DNA双链退火压力对DNA聚合酶gp5链置换的调控. 物理学报, 2021, 70(15): 158701. doi: 10.7498/aps.70.20210707
    [5] 马东飞, 侯文清, 徐春华, 赵春雨, 马建兵, 黄星榞, 贾棋, 马璐, 刘聪, 李明, 陆颖. 脂质体包裹荧光受体方法研究α-突触核蛋白在磷脂膜上的结构和动态特征. 物理学报, 2020, 69(3): 038701. doi: 10.7498/aps.69.20191607
    [6] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [7] 吕袭明, 李辉, 尤菁, 李伟, 王鹏业, 李明, 奚绪光, 窦硕星. 单分子荧光共振能量转移数据处理的优化算法. 物理学报, 2017, 66(11): 118701. doi: 10.7498/aps.66.118701
    [8] 储玉飞, 张远宪, 刘春, 普小云. 微流芯片中消逝波激励的荧光辐射特性研究. 物理学报, 2017, 66(10): 104208. doi: 10.7498/aps.66.104208
    [9] 李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥. CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移. 物理学报, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [10] 何志聪, 李芳, 李牧野, 魏来. CdTe量子点-铜酞菁复合体系荧光共振能量转移的研究. 物理学报, 2015, 64(4): 046802. doi: 10.7498/aps.64.046802
    [11] 袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞. 基于受激布里渊散射能量转移的冲击点火激光技术研究. 物理学报, 2012, 61(11): 114207. doi: 10.7498/aps.61.114207
    [12] 普小云, 白然, 向文丽, 杜飞, 江楠. 消逝波激励的双波段光纤回音壁模式激光辐射. 物理学报, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [13] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [14] 张洪英, 陈德应, 鲁振中, 樊荣伟, 夏元钦. Ba-Sr系统激光感生碰撞能量转移的数值计算. 物理学报, 2008, 57(12): 7600-7605. doi: 10.7498/aps.57.7600
    [15] 王正岭, 曹国荣, 印建平. 采用消逝波干涉的二维表面微光阱阵列. 物理学报, 2008, 57(10): 6233-6239. doi: 10.7498/aps.57.6233
    [16] 宋淑芳, 赵德威, 徐 征, 徐叙瑢. 有机多层量子阱的能量转移. 物理学报, 2007, 56(6): 3499-3503. doi: 10.7498/aps.56.3499
    [17] 倪 赟, 印建平. 采用四根单模光纤束实现消逝波原子(或分子)波导的理论分析. 物理学报, 2006, 55(1): 130-136. doi: 10.7498/aps.55.130
    [18] 杨立书, 刘宗才, 鲁士平, 荀克用, 汪正民. 强红外激光场中氟里昂123分子内的V-V能量转移. 物理学报, 1990, 39(10): 1542-1546. doi: 10.7498/aps.39.1542
    [19] 张道中, 程丙英, 鞠蕊, 赵小康. 激光诱导下Yb—Ba间的能量转移过程. 物理学报, 1985, 34(12): 1644-1648. doi: 10.7498/aps.34.1644
    [20] 高文斌, 沈玉其, J. H?GER, W. KRIEGER. 激光诱导荧光法研究CH2Cl2分子的振动能量转移. 物理学报, 1985, 34(10): 1261-1269. doi: 10.7498/aps.34.1261
计量
  • 文章访问数:  8386
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-11
  • 修回日期:  2018-11-11
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回