-
基于空间电荷波理论,导出了N间隙休斯结构耦合腔中注-波耦合系数和电子注电导计算公式,通过计算耦合腔中电子注的品质因数来分析电路的稳定性.研究表明,随着间隙数目N的增加,工作模式(2π模)稳定性对直流工作电压更加敏感,同时其他寄生模式的抑制会愈加困难.以三间隙休斯结构耦合腔为例,通过合理选择工作电压,2π模可以稳定工作,通常靠近2π模的π/2模可能更容易引发自激振荡.
-
关键词:
- 休斯结构多间隙耦合腔 /
- 耦合系数 /
- 电子注电导 /
- 稳定性
In this paper, the analytical expressions of the beam-wave coupling coefficient and the beam-loaded conductance in the N-gap Hughes-type coupled cavity used in an extended- interaction klystron are derived based on the space-charge wave theory. The stability of the circuit is discussed through calculating the quality factor of the electron beam. The theoretical analyses show that with the increase of N, the stability of operating mode (2π) becomes more sensitive to the beam voltage, and that the parasitical oscillation may more easily occur and is difficult to suppress. In addition, the increase of the perveance and the decrease of the external loaded quality factor may both cause the instability of the system. The electric field intensities on the gap are greatly different among the modes 2π, π and π/2, which may be a new subject for improving the power capability and the bandwidth in klystron development.-
Keywords:
- multi-gap Hughes-type coupled cavity /
- coupling coefficient /
- beam-loaded conductance /
- stability
[1] Chodorow M, Kulke B 1966 IEEE Trans. Electron Devices 13 439
[2] Perring D, Philips G, Smith M J 1976 Advisory Group for Aerospace Research and Development Conference Proceedings, Hayes, England, May 1—8, 1976, p197
[3] Chen L, Cheng F H, Wang J D, Yang C Y, Chu K R 2002 Proceedings of International Vacuum Electronics Conference Monterey, USA, April 23—25 2002, p322
[4] Shin Y M, Park G S 2004 J. Korean Phys. Soc. 44 1239
[5] Roitman A, Berry D, Steer B 2005 IEEE Trans. Electron Devices 52 895
[6] Roitman A, Horoyski P, Hyttinen M, Berry D, Steer B 2006 Proceedings of IEEE International Vacuum Electronics Conference Monterey, USA, April 25—27, 2006, p191
[7] Chen L, Guo H Z, Chen H Y, Tsao M H, Yang T T, Tsai Y C, Chu K R 2000 IEEE Trans. Plasma Sci. 28 626
[8] Zhang K C, Wu Z H,Liu S G 2008 Chin. Phys. B 17 3402
[9] Kantrowitz F, Tammaru I 1988 IEEE Trans. Electron Devices 35 2018
[10] Zhang J, Zhong H H 2005 Acta Phys.Sin. 54 206 (in Chinese) [张 军、 钟辉煌 2005 物理学报 54 206]
[11] Nguyen K T, Pershing D E, Abe D K, Levush B 2006 IEEE Trans. Plasma Sci. 34 576
[12] Shin Y M, Ryskin N M, Won J H, Han S T, Park G S 2006 Phys. Plasmas 13 033104
[13] Ding Y G, Zhu Y S, Yin X L 2007 IEEE Trans. Electron Devices 54 624
[14] Durand A J 2006 Proceedings of IEEE International Vacuum Electronics Conference Monterey, USA, April 25—27, 2006 p73
[15] Chiang W Y, Chu K R 2008 Proceedings of IEEE International Vacuum Electronics Conference Monterey, USA, April 22—24, 2008, p201
[16] Wessel-Berg T 1957 Microwave Lab. Stanford Univ. Tech. Rep. p376
[17] Lau Y Y, Chernin D 1992 Phys. Fluids B 4 3473
[18] Cui J, Luo J R, Zhu M, Guo W 2010 Acta Phys.Sin 59 7383 (in Chinese) [崔 健、 罗积润、 朱 敏、 郭 炜 2010 物理学报 59 7383]
[19] Haikov A Z (translated by Huang G N) 1980 Klystron Amplifiers (Beijing: National Defense Industry Press) p93 (in Chinese) [哈依柯夫 А. З. 著 黄高年译 1980速调管放大器 (北京: 国防工业出版社) 第93页]
[20] Xie J L, Zhao Y X 1966 Theory of Klystrons Modulation (Beijing: Science Press) p31 (in Chinese) [谢家麐、 赵永翔 1966速调管群聚理论 (北京: 科学出版杜) 第31页]
[21] Uhm H S 1998 Phys. Plasmas 5 4411
-
[1] Chodorow M, Kulke B 1966 IEEE Trans. Electron Devices 13 439
[2] Perring D, Philips G, Smith M J 1976 Advisory Group for Aerospace Research and Development Conference Proceedings, Hayes, England, May 1—8, 1976, p197
[3] Chen L, Cheng F H, Wang J D, Yang C Y, Chu K R 2002 Proceedings of International Vacuum Electronics Conference Monterey, USA, April 23—25 2002, p322
[4] Shin Y M, Park G S 2004 J. Korean Phys. Soc. 44 1239
[5] Roitman A, Berry D, Steer B 2005 IEEE Trans. Electron Devices 52 895
[6] Roitman A, Horoyski P, Hyttinen M, Berry D, Steer B 2006 Proceedings of IEEE International Vacuum Electronics Conference Monterey, USA, April 25—27, 2006, p191
[7] Chen L, Guo H Z, Chen H Y, Tsao M H, Yang T T, Tsai Y C, Chu K R 2000 IEEE Trans. Plasma Sci. 28 626
[8] Zhang K C, Wu Z H,Liu S G 2008 Chin. Phys. B 17 3402
[9] Kantrowitz F, Tammaru I 1988 IEEE Trans. Electron Devices 35 2018
[10] Zhang J, Zhong H H 2005 Acta Phys.Sin. 54 206 (in Chinese) [张 军、 钟辉煌 2005 物理学报 54 206]
[11] Nguyen K T, Pershing D E, Abe D K, Levush B 2006 IEEE Trans. Plasma Sci. 34 576
[12] Shin Y M, Ryskin N M, Won J H, Han S T, Park G S 2006 Phys. Plasmas 13 033104
[13] Ding Y G, Zhu Y S, Yin X L 2007 IEEE Trans. Electron Devices 54 624
[14] Durand A J 2006 Proceedings of IEEE International Vacuum Electronics Conference Monterey, USA, April 25—27, 2006 p73
[15] Chiang W Y, Chu K R 2008 Proceedings of IEEE International Vacuum Electronics Conference Monterey, USA, April 22—24, 2008, p201
[16] Wessel-Berg T 1957 Microwave Lab. Stanford Univ. Tech. Rep. p376
[17] Lau Y Y, Chernin D 1992 Phys. Fluids B 4 3473
[18] Cui J, Luo J R, Zhu M, Guo W 2010 Acta Phys.Sin 59 7383 (in Chinese) [崔 健、 罗积润、 朱 敏、 郭 炜 2010 物理学报 59 7383]
[19] Haikov A Z (translated by Huang G N) 1980 Klystron Amplifiers (Beijing: National Defense Industry Press) p93 (in Chinese) [哈依柯夫 А. З. 著 黄高年译 1980速调管放大器 (北京: 国防工业出版社) 第93页]
[20] Xie J L, Zhao Y X 1966 Theory of Klystrons Modulation (Beijing: Science Press) p31 (in Chinese) [谢家麐、 赵永翔 1966速调管群聚理论 (北京: 科学出版杜) 第31页]
[21] Uhm H S 1998 Phys. Plasmas 5 4411
计量
- 文章访问数: 7859
- PDF下载量: 764
- 被引次数: 0