搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子晶体高功率微波模式转换器设计

王冬 徐莎 曹延伟 秦奋

引用本文:
Citation:

光子晶体高功率微波模式转换器设计

王冬, 徐莎, 曹延伟, 秦奋

Design of a metallic photonic crystal high power microwave mode converter

Wang Dong, Xu Sha, Cao Yan-Wei, Qin Fen
PDF
导出引用
  • 研究了传输线中非截面排列金属光子晶体电磁特性,并利用其作为移相器提出了一种紧凑型TEM–TE11模式转换器的设计方法. 利用电磁软件cst microwave studio优化设计了一套L 波段TEM–TE11模式转换器,在中心频率1.58 GHz上转换效率为98%. 在1.56–1.625 GHz 频率范围内,模式转换器转换效率大于90%,对应带宽4.1%. 模式转换器功率容量为GW级,适用于高功率微波源系统. 结合磁绝缘线振荡器开展了粒子模拟研究工作,发现模式转换器性能与设计结果相符,并且其引入不影响高功率微波器件的正常工作.
    Electromagnetic properties of a two-dimensional metallic photonic crystal in a transmission line is analyzed, and a compact TEM-TE11 high-power microwave mode converter which takes this type of sturcture for phase-shiftting is presented. An L band TEM-TE11 mode converter is optimized using the commercial software cst microwave studio. Its conversion efficiency is 98% at the center frequency of 1.58 GHz. Over the frequency range of 1.56–1.625 GHz, the conversion efficiency exceeds 90%, with a corresponding bandwidth of 4.1%. This mode converter has a gagawatt level power handling capability, thus it is suitable for narrow band high-power microwave application. Using magnetically insulated transmission line oscillator as a high-power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. It is found that the proposed mode converter works well with this narrow band high power microwave device.
    • 基金项目: 中国工程物理研究院科学技术发展基金(批准号:2012B0402066)资助的课题.
    • Funds: Project supported by China Academy of Engineering Physics (Grant No. 2012B0402066).
    [1]

    Poilasne G, Pouliguen P, Mahdjoubi K, Desclos L, Gelin P, Terret C 2000 Ann. Telecommun. 55 207

    [2]

    Kesler M P, Maloney J G, Shirley B L 1996 Microwave Opt. Tech. Lett. 11 169

    [3]

    Ederra I, Khromova I, Gonzalo R, Delhote N, Baillargeat D, Murk A, Alderman B E J, De Maagt P 2010 IEEE Trans. Microwave Theory and Techniques 58 1734

    [4]

    Rumsey I, Piket-May M, Kelly P K 1998 IEEE Microwave Guided Wave Lett. 8 336

    [5]

    Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A, Temkin R J 2001 Phys. Rev. Lett. 86 5628

    [6]

    Yang S W, Qing A Y 2005 IEEE Trans. on Plasma Sci. 33 1372

    [7]

    Lawson W, Arjona M R, Hogan B P, Ives R L 2000 IEEE Trans. Microwave Theory and Techniques 48 809

    [8]

    Chen D B, Fan Z K, Zhou H J, Gao F Q, He H, Guo Y H, Wang D, Wang X D, Gong H T, An H S 2007 High Power Laser and Particle Beams 19 1352 (in Chinese) [陈代兵, 范植开, 周海鲸, 高凤琴, 何琥, 郭焱华, 王冬, 王晓东, 龚海涛, 安海狮 2007 强激光与粒子束 19 1352]

    [9]

    Liu Q X, Yuan C W 2004 High Power Laser and Particle Beams 16 1421 (in Chinese) [刘庆想, 袁成卫 2004 强激光与粒子束 16 1421]

    [10]

    Yuan C W, Zhong H H, Zhang J D, Qian B L 2009 High Power Laser and Particle Beams 21 411 (in Chinese) [袁成卫, 钟辉煌, 张建德, 钱宝良 2009 强激光与粒子束 21 411]

    [11]

    Wang D, Jin X, Chen D B, Qin F, Wen J 2012 High Power Laser and Particle Beams 24 2169 (in Chinese) [王冬, 金晓, 陈代兵, 秦奋, 文杰 2012 强激光与粒子束 24 2169]

    [12]

    Yin H R, Gong Y B, Wei Y Y, Lu Z G, Gong H R, Yue L N, Huang M Z, Wang W X 2007 Acta Phys. Sin. 56 1590 (in Chinese) [殷海荣, 宫玉彬, 魏彦玉, 路志刚, 巩华荣, 岳玲娜, 黄民智, 王文祥 2007 物理学报 56 1590]

    [13]

    Yin H R, Gong Y B, Wei Y Y, Yue L N, Lu Z G, Gong H R, Huang M Z, Wang W X 2008 Acta Phys. Sin. 57 3562 (in Chinese) [殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥 2008 物理学报 57 3562]

    [14]

    Wang D, Qin F, Shi M Y, Chen D B, Wen J, Jin X, Xu S 2013 AIP Advances 3 052128

    [15]

    Wang D, Qin F, Wen J, Chen D B, Jin X, An H S, Zhang X K 2012 Chin. Phys. B 21 084101

  • [1]

    Poilasne G, Pouliguen P, Mahdjoubi K, Desclos L, Gelin P, Terret C 2000 Ann. Telecommun. 55 207

    [2]

    Kesler M P, Maloney J G, Shirley B L 1996 Microwave Opt. Tech. Lett. 11 169

    [3]

    Ederra I, Khromova I, Gonzalo R, Delhote N, Baillargeat D, Murk A, Alderman B E J, De Maagt P 2010 IEEE Trans. Microwave Theory and Techniques 58 1734

    [4]

    Rumsey I, Piket-May M, Kelly P K 1998 IEEE Microwave Guided Wave Lett. 8 336

    [5]

    Sirigiri J R, Kreischer K E, Machuzak J, Mastovsky I, Shapiro M A, Temkin R J 2001 Phys. Rev. Lett. 86 5628

    [6]

    Yang S W, Qing A Y 2005 IEEE Trans. on Plasma Sci. 33 1372

    [7]

    Lawson W, Arjona M R, Hogan B P, Ives R L 2000 IEEE Trans. Microwave Theory and Techniques 48 809

    [8]

    Chen D B, Fan Z K, Zhou H J, Gao F Q, He H, Guo Y H, Wang D, Wang X D, Gong H T, An H S 2007 High Power Laser and Particle Beams 19 1352 (in Chinese) [陈代兵, 范植开, 周海鲸, 高凤琴, 何琥, 郭焱华, 王冬, 王晓东, 龚海涛, 安海狮 2007 强激光与粒子束 19 1352]

    [9]

    Liu Q X, Yuan C W 2004 High Power Laser and Particle Beams 16 1421 (in Chinese) [刘庆想, 袁成卫 2004 强激光与粒子束 16 1421]

    [10]

    Yuan C W, Zhong H H, Zhang J D, Qian B L 2009 High Power Laser and Particle Beams 21 411 (in Chinese) [袁成卫, 钟辉煌, 张建德, 钱宝良 2009 强激光与粒子束 21 411]

    [11]

    Wang D, Jin X, Chen D B, Qin F, Wen J 2012 High Power Laser and Particle Beams 24 2169 (in Chinese) [王冬, 金晓, 陈代兵, 秦奋, 文杰 2012 强激光与粒子束 24 2169]

    [12]

    Yin H R, Gong Y B, Wei Y Y, Lu Z G, Gong H R, Yue L N, Huang M Z, Wang W X 2007 Acta Phys. Sin. 56 1590 (in Chinese) [殷海荣, 宫玉彬, 魏彦玉, 路志刚, 巩华荣, 岳玲娜, 黄民智, 王文祥 2007 物理学报 56 1590]

    [13]

    Yin H R, Gong Y B, Wei Y Y, Yue L N, Lu Z G, Gong H R, Huang M Z, Wang W X 2008 Acta Phys. Sin. 57 3562 (in Chinese) [殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥 2008 物理学报 57 3562]

    [14]

    Wang D, Qin F, Shi M Y, Chen D B, Wen J, Jin X, Xu S 2013 AIP Advances 3 052128

    [15]

    Wang D, Qin F, Wen J, Chen D B, Jin X, An H S, Zhang X K 2012 Chin. Phys. B 21 084101

  • [1] 薛艳茹, 田朋飞, 金娃, 赵能, 靳云, 毕卫红. 基于少模长周期光纤叠栅的模式转换器. 物理学报, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [2] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究. 物理学报, 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [3] 傅涛, 欧阳征标. 等离子体填充金属光子晶体Cherenkov辐射源模拟研究. 物理学报, 2016, 65(7): 074208. doi: 10.7498/aps.65.074208
    [4] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理. 物理学报, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [5] 唐涛. 高功率微波土壤击穿的数值验证研究. 物理学报, 2015, 64(4): 045203. doi: 10.7498/aps.64.045203
    [6] 傅涛, 杨梓强, 欧阳征标. 等离子体填充金属光子晶体慢波结构色散特性研究. 物理学报, 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [7] 周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍. 基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究. 物理学报, 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [8] 马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾. 不同样式的高功率微波对双极晶体管的损伤效应和机理. 物理学报, 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [9] 马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌. 双极晶体管微波损伤效应与机理. 物理学报, 2012, 61(7): 078501. doi: 10.7498/aps.61.078501
    [10] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究. 物理学报, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [11] 方进勇, 黄惠军, 张治强, 黄文华, 江伟华. 基于圆柱谐振腔的高功率微波脉冲压缩系统. 物理学报, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [12] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [13] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究. 物理学报, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [14] 王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧. 长脉冲高功率微波驱动源放电过程研究. 物理学报, 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [15] 黎燕林, 薛谦忠, 杜朝海, 郝保良. 修正的频域有限差分法在二维金属光子晶体分析中的应用. 物理学报, 2010, 59(4): 2556-2563. doi: 10.7498/aps.59.2556
    [16] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏. 一种高功率微波空间滤波器的设计与初步实验研究. 物理学报, 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [17] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [18] 孙 旭, 赵 青, 李宏福. 宽带非均匀半径渐变TE0n-TE0(n+1)模式转换器的设计研究. 物理学报, 2008, 57(4): 2130-2135. doi: 10.7498/aps.57.2130
    [19] 路志刚, 宫玉彬, 魏彦玉, 王文祥. 二维金属光子晶体的带结构研究. 物理学报, 2006, 55(7): 3590-3596. doi: 10.7498/aps.55.3590
    [20] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究. 物理学报, 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
计量
  • 文章访问数:  3494
  • PDF下载量:  566
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 修回日期:  2013-09-07
  • 刊出日期:  2014-01-05

光子晶体高功率微波模式转换器设计

  • 1. 中国工程物理研究院应用电子学研究所高功率微波技术重点实验室, 绵阳 621900;
  • 2. 二炮装备研究院, 北京 100085
    基金项目: 中国工程物理研究院科学技术发展基金(批准号:2012B0402066)资助的课题.

摘要: 研究了传输线中非截面排列金属光子晶体电磁特性,并利用其作为移相器提出了一种紧凑型TEM–TE11模式转换器的设计方法. 利用电磁软件cst microwave studio优化设计了一套L 波段TEM–TE11模式转换器,在中心频率1.58 GHz上转换效率为98%. 在1.56–1.625 GHz 频率范围内,模式转换器转换效率大于90%,对应带宽4.1%. 模式转换器功率容量为GW级,适用于高功率微波源系统. 结合磁绝缘线振荡器开展了粒子模拟研究工作,发现模式转换器性能与设计结果相符,并且其引入不影响高功率微波器件的正常工作.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回