搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S波段四腔强流相对论速调管的设计和实验研究

成会 谢鸿全 刘迎辉 李正红 吴洋

引用本文:
Citation:

S波段四腔强流相对论速调管的设计和实验研究

成会, 谢鸿全, 刘迎辉, 李正红, 吴洋

Experimental researches of a four-cavity intense relativistic klystron amplifier

Cheng Hui, Xie Hong-Quan, Liu Ying-Hui, Li Zheng-Hong, Wu Yang
PDF
导出引用
  • 本文根据四腔强流相对论速调管设计过程中出现的高次模振荡现象,采用电磁场软件模拟,分析了这种振荡的产生原因,给出抑制这种高次模振荡的方法. 利用二维和三维模拟软件,研究了谐振腔谐振频率、谐振腔Q值、漂移管长度、特性阻抗等参数的变化对高次模振荡的影响,模拟上验证了高次模振荡抑制方法的有效性,并在输出端模拟获得了功率2.13 GW、效率26%、增益60 dB的输出微波,实现了2D,3D中高次模振荡的有效抑制. 最终在实验中获得了功率1.9 GW、效率24%、增益61 dB的输出微波.
    This paper described a high-order mode oscillation phenomenon, in the simulation of four-cavity intense relativistic klystron amplifier(IRKA). And we have analyzed the cause of this kind of oscillation, and explored the suppression methods for the whole tube. Two-dimensional and three-dimensional electromagnetism simulation software are used to study the influence of parameter’s changes (such as the oscillation frequency of cavities, the cavity Q value, the length of drift tube, and the characteristic impedance) on the high-order mode oscillation. The effectiveness of the high-order mode oscillation suppression methods is verified by simulation. Then, by optimizing the structure of IRKA, we have achieved an output microwave with a power of 2.13 GW, a gain of 60 dB and an efficiency of 26% in simulation, and the high-mode oscillation is avoided effectively. Finally, an output microwave with a power of 1.9 GW, a gain of 61 dB, and an efficiency of 24% is gained in the experiment.
    • 基金项目: 国家自然科学基金(批准号:61271109)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271109).
    [1]

    Benfoed J, Swegle J High Power Microwave. (New York: Taylor and Francis Group) (in America)

    [2]

    Ding Y G 2008 Theory and Computer Simulation of High Power Klystron(Beijing: National Defense Industry Press) p2 (in Chinese) [丁耀根 2008 大功率速调管的理论与设计模拟 (北京: 国防科技工业出版社)第2页]

    [3]

    Luo J R, Cui J, Zhu M 2013 Chin. Phys. B 22 067803

    [4]

    Becker U, Krieterstein B, Weiland T, Dohlus M, Ko K 1996 Proceeding of European Particle Accelerator Conference Baroelona, 1996 p1274. 会议文集 地理时间

    [5]

    Ding Y G 1992 Journal of Electronics 14 409 (in Chinese) [丁耀根 1992 电子科学学刊 14 409]

    [6]

    Zhang R, Wang Y 2006 High Power Laser Particle Beams 18 1129 (in Chinese) [张瑞, 王勇 2006 强激光与粒子束 18 1129]

    [7]

    Fan Z K 1999 High Power Laser Particle Beams 11 633 (in Chinese) [范植开 1999 强激光与粒子束 11 633]

    [8]

    Dong Y H, Ding Y G, Xiao L 2005 Acta Phys. Sin. 54 5629 (in Chinese) [董玉和, 丁耀根, 肖刘 2005 物理学报 54 5629]

    [9]

    Rowe J E 1965 Nonlinear electron-wave interaction phenomena (London: Academic Press) p324 (in England)

    [10]

    Slater J C 1946 Rev. Mod. Phys. 18 441

    [11]

    Nusinovich G, Read M, Song L Q 2004 Phys. Plasmas 11 4893

    [12]

    Xie J L, Zhao Y X 1996 Bunching theory of klystron (Beijing: Science Press) p63 (in Chinese) [谢家麟, 赵永翔 1996速调管群聚理论(北京: 科学出版社)第63页]

    [13]

    Li Z H, Meng F B, Chang A B, Huang H, Ma Q S 2005 Acta Phys. Sin. 54 3578 (in Chinese) [李正红, 孟凡宝, 常安碧, 黄华, 马乔生 2005 物理学报 54 3578]

  • [1]

    Benfoed J, Swegle J High Power Microwave. (New York: Taylor and Francis Group) (in America)

    [2]

    Ding Y G 2008 Theory and Computer Simulation of High Power Klystron(Beijing: National Defense Industry Press) p2 (in Chinese) [丁耀根 2008 大功率速调管的理论与设计模拟 (北京: 国防科技工业出版社)第2页]

    [3]

    Luo J R, Cui J, Zhu M 2013 Chin. Phys. B 22 067803

    [4]

    Becker U, Krieterstein B, Weiland T, Dohlus M, Ko K 1996 Proceeding of European Particle Accelerator Conference Baroelona, 1996 p1274. 会议文集 地理时间

    [5]

    Ding Y G 1992 Journal of Electronics 14 409 (in Chinese) [丁耀根 1992 电子科学学刊 14 409]

    [6]

    Zhang R, Wang Y 2006 High Power Laser Particle Beams 18 1129 (in Chinese) [张瑞, 王勇 2006 强激光与粒子束 18 1129]

    [7]

    Fan Z K 1999 High Power Laser Particle Beams 11 633 (in Chinese) [范植开 1999 强激光与粒子束 11 633]

    [8]

    Dong Y H, Ding Y G, Xiao L 2005 Acta Phys. Sin. 54 5629 (in Chinese) [董玉和, 丁耀根, 肖刘 2005 物理学报 54 5629]

    [9]

    Rowe J E 1965 Nonlinear electron-wave interaction phenomena (London: Academic Press) p324 (in England)

    [10]

    Slater J C 1946 Rev. Mod. Phys. 18 441

    [11]

    Nusinovich G, Read M, Song L Q 2004 Phys. Plasmas 11 4893

    [12]

    Xie J L, Zhao Y X 1996 Bunching theory of klystron (Beijing: Science Press) p63 (in Chinese) [谢家麟, 赵永翔 1996速调管群聚理论(北京: 科学出版社)第63页]

    [13]

    Li Z H, Meng F B, Chang A B, Huang H, Ma Q S 2005 Acta Phys. Sin. 54 3578 (in Chinese) [李正红, 孟凡宝, 常安碧, 黄华, 马乔生 2005 物理学报 54 3578]

计量
  • 文章访问数:  2033
  • PDF下载量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-11
  • 修回日期:  2013-09-17
  • 刊出日期:  2014-01-05

S波段四腔强流相对论速调管的设计和实验研究

  • 1. 电子科技大学物理电子学院, 成都 610000;
  • 2. 中国工程物理研究院, 应用电子研究所, 高功率微波技术重点实验室, 绵阳 621900;
  • 3. 西南科技大学理学院, 绵阳 621010
    基金项目: 

    国家自然科学基金(批准号:61271109)资助的课题.

摘要: 本文根据四腔强流相对论速调管设计过程中出现的高次模振荡现象,采用电磁场软件模拟,分析了这种振荡的产生原因,给出抑制这种高次模振荡的方法. 利用二维和三维模拟软件,研究了谐振腔谐振频率、谐振腔Q值、漂移管长度、特性阻抗等参数的变化对高次模振荡的影响,模拟上验证了高次模振荡抑制方法的有效性,并在输出端模拟获得了功率2.13 GW、效率26%、增益60 dB的输出微波,实现了2D,3D中高次模振荡的有效抑制. 最终在实验中获得了功率1.9 GW、效率24%、增益61 dB的输出微波.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回