搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合振动控制的柱面纵向梯度线圈目标场设计方法

胡格丽 倪志鹏 王秋良

引用本文:
Citation:

结合振动控制的柱面纵向梯度线圈目标场设计方法

胡格丽, 倪志鹏, 王秋良

A target field method for designing cylindrical z-gradient coil combined with vibration control

Hu Ge-Li, Ni Zhi-Peng, Wang Qiu-Liang
PDF
导出引用
  • 在磁共振成像系统的工作过程中,噪声主要是由梯度线圈系统产生的. 梯度线圈置于高均匀度超导磁体的室温孔内,并工作于脉冲状态,频繁的开启和关闭会使线圈中电流急剧随时间变化,变化的电流导致线圈受到变化的洛伦兹力作用,从而产生振动,这种高频振动所发出的噪声会对病人产生刺激,严重时甚至会对病人的听觉神经产生损伤. 梯度场的场强越强、切换速度越快,所产生的噪声就越大. 降低噪声的最根本方法是通过有效的梯度线圈设计,降低洛伦兹力的空间分布. 本文针对纵向梯度线圈,在原经典目标场设计方法基础上,加入对振动参量,从而能够有效地降低线圈工作时所产生的噪声. 其具体方法是将振动控制函数作为约束条件,通过目标场法建立数学模型,利用MATLAB进行电磁验算. 计算结果表明,所提数学模型可有效地降低线圈振动的最大振幅.
    During the scanning of magnetic resonance imaging (MRI) system, the main acoustic noise source comes from the gradient coils. The gradient coils are turned on and off repeatedly, thus producing noise within the coil. With increasing magnetic field strength, the noise also increases. The primary method to reduce the noise is to decrease the distribution of the Lorentz forces. Target field (TF) method is very important for designing gradient coils which have been used in MRI and other applications. Many works based on the Turner’s traditional TF method have been proposed. In this paper, a target field method combined with vibration control has been presented to analyze the deflection of a cylindrical z-gradient coil because of the Lorentz forces. Simulation results via Matlab show that the maximum vibration amplitude can be reduced effectively by the new design method proposed in this paper.
    • 基金项目: 国家自然科学基金(批准号:10755001,50925726)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50925726, 50577063).
    [1]

    Li L K, Wang H S, Ni Z P, Cheng J S, Wang Q L 2013 Acta Phys. Sin. 62 058403 (in Chinese) [李兰凯, 王厚生, 倪志鹏, 程军胜, 王秋良 2013 物理学报 62 058403]

    [2]

    Wang Q L 2013 Progress in Physics 33 1

    [3]

    Jackson J M, Brideson M A, Forbes L K, Crozier S 2010 Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 37B 167

    [4]

    Brideson M A, Forbes L K, Jackson J, Crozier S 2008 ANZIAM 49 C423

    [5]

    Forbes L K, Brideson M A, Crozier S, While P T 2007 Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 31B 218

    [6]

    Forbes L K, Brideson M A, Crozier S, While P T 2007 ANZIAM J. 49 C17

    [7]

    Turner R 1986 Physics D: Applied Physics 19 L147

    [8]

    Turner R 1993 Magnetic Resonance Imaging 11 903

    [9]

    Forbes L K, Crozier S 2001 Physics D: Applied Physics 34 3447

    [10]

    Forbes L K, Crozier S 2002 Physics D: Applied Physics 35 839

    [11]

    Forbes L K, Crozier S 2003 Physics D: Applied Physics 36 68

    [12]

    Liu W T, Zu D L, Tang X, Guo H 2007 Physics D: Applied Physics 40 4418

    [13]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701

    [14]

    You X F, Yang W H, Song T, Hu L L, Wang H X 2011 Bioelectronics and Bioinformatics, Suzhou, China Nov 3–5, 2011, p115

    [15]

    Wang Q L 2007 (Beijing: Science Press) p118–128 (in Chinese) [王秋良 2007 高磁场超导磁体科学(北京: 科学出版社)第118–128页]

    [16]

    Wang Q L 2013 Practical Design of Magnetostatic Structure Using Numerical Simulation (Singapore: Wiley) pp400–411

    [17]

    Brideson M A, Forbes L K 2002 Concepts in Magnetic Resonance 14 9

  • [1]

    Li L K, Wang H S, Ni Z P, Cheng J S, Wang Q L 2013 Acta Phys. Sin. 62 058403 (in Chinese) [李兰凯, 王厚生, 倪志鹏, 程军胜, 王秋良 2013 物理学报 62 058403]

    [2]

    Wang Q L 2013 Progress in Physics 33 1

    [3]

    Jackson J M, Brideson M A, Forbes L K, Crozier S 2010 Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 37B 167

    [4]

    Brideson M A, Forbes L K, Jackson J, Crozier S 2008 ANZIAM 49 C423

    [5]

    Forbes L K, Brideson M A, Crozier S, While P T 2007 Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 31B 218

    [6]

    Forbes L K, Brideson M A, Crozier S, While P T 2007 ANZIAM J. 49 C17

    [7]

    Turner R 1986 Physics D: Applied Physics 19 L147

    [8]

    Turner R 1993 Magnetic Resonance Imaging 11 903

    [9]

    Forbes L K, Crozier S 2001 Physics D: Applied Physics 34 3447

    [10]

    Forbes L K, Crozier S 2002 Physics D: Applied Physics 35 839

    [11]

    Forbes L K, Crozier S 2003 Physics D: Applied Physics 36 68

    [12]

    Liu W T, Zu D L, Tang X, Guo H 2007 Physics D: Applied Physics 40 4418

    [13]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701

    [14]

    You X F, Yang W H, Song T, Hu L L, Wang H X 2011 Bioelectronics and Bioinformatics, Suzhou, China Nov 3–5, 2011, p115

    [15]

    Wang Q L 2007 (Beijing: Science Press) p118–128 (in Chinese) [王秋良 2007 高磁场超导磁体科学(北京: 科学出版社)第118–128页]

    [16]

    Wang Q L 2013 Practical Design of Magnetostatic Structure Using Numerical Simulation (Singapore: Wiley) pp400–411

    [17]

    Brideson M A, Forbes L K 2002 Concepts in Magnetic Resonance 14 9

  • [1] 李伟健, 周晓艳, 陆杭军. 无阀纳米泵中水流的反常堵塞. 物理学报, 2024, 73(9): 094702. doi: 10.7498/aps.73.20240115
    [2] 史慧敏, 胡静, 王成会, 凤飞龙, 莫润阳. 有限长管内包膜微泡在磁-声复合场作用下的振动行为. 物理学报, 2021, 70(21): 214303. doi: 10.7498/aps.70.20210559
    [3] 董成伟. 非扩散洛伦兹系统的周期轨道. 物理学报, 2018, 67(24): 240501. doi: 10.7498/aps.67.20181581
    [4] 赵章风, 张文俊, 牛丽丽, 孟龙, 郑海荣. 基于微泡共振的快速微流体声学混合方法研究. 物理学报, 2018, 67(19): 194302. doi: 10.7498/aps.67.20180705
    [5] 潘辉, 王亮, 王强龙, 陈利民, 贾峰, 刘震宇. 基于Pareto优化理论的多目标超椭梯度线圈设计. 物理学报, 2017, 66(9): 098301. doi: 10.7498/aps.66.098301
    [6] 代尚军, 吴思进, 王晓东, 史祎诗. 融合散斑干涉技术的阵列式洛伦兹力微颗粒探测方法. 物理学报, 2017, 66(20): 208102. doi: 10.7498/aps.66.208102
    [7] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [8] 张富翁, 王立, 刘传平, 吴平. 竖直振动管中颗粒的上升运动. 物理学报, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [9] 陈耀慧, 董祥瑞, 陈志华, 张辉, 栗保明, 范宝春. 翼型绕流的洛伦兹力控制机理. 物理学报, 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [10] 南一冰, 唐义, 张丽君, 常月娥, 陈廷爱. 一种卫星平台振动光谱成像数据分块校正方法. 物理学报, 2014, 63(1): 010701. doi: 10.7498/aps.63.010701
    [11] 赵建利, 王京, 王慧. 洛伦兹-哈肯激光混沌系统有限时间稳定主动控制方法研究. 物理学报, 2012, 61(11): 110209. doi: 10.7498/aps.61.110209
    [12] 唐秋艳, 唐义, 曹玮亮, 王静, 南一冰, 倪国强. 卫星平台复杂振动引起的光谱成像退化仿真研究. 物理学报, 2012, 61(7): 070202. doi: 10.7498/aps.61.070202
    [13] 周先春, 林万涛, 林一骅, 姚静荪, 莫嘉琪. 一类扰动洛伦兹系统的解法. 物理学报, 2011, 60(11): 110207. doi: 10.7498/aps.60.110207
    [14] 张霖, 张淳民, 简小华. 高层大气风场洛伦兹光谱线型粒子辐射率探测研究. 物理学报, 2010, 59(2): 899-906. doi: 10.7498/aps.59.899
    [15] 冯海冉, 李鹏, 郑雨军, 丁世良. 用李代数方法解析研究线性三原子分子振动的动力学纠缠. 物理学报, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [16] 赵永志, 江茂强, 郑津洋. 巴西果效应分离过程的计算颗粒力学模拟研究. 物理学报, 2009, 58(3): 1812-1818. doi: 10.7498/aps.58.1812
    [17] 樊飞, 班春燕, 王洋, 巴启先, 崔建忠. 普通铸造和低频电磁铸造7050铝合金电阻率-温度特性的研究. 物理学报, 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [18] 周国泉. 洛伦兹光束的传输特性研究. 物理学报, 2008, 57(6): 3494-3498. doi: 10.7498/aps.57.3494
    [19] 沈 杰, 宁瑞鹏, 刘 颖, 李鲠颖. 一种减小梯度线圈产生的涡流的方法. 物理学报, 2006, 55(6): 3060-3066. doi: 10.7498/aps.55.3060
    [20] 姜泽辉, 陆坤权, 厚美瑛, 陈 唯, 陈相君. 振动颗粒混合物中的三明治式分离. 物理学报, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
计量
  • 文章访问数:  6350
  • PDF下载量:  736
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-07
  • 修回日期:  2013-10-10
  • 刊出日期:  2014-01-05

/

返回文章
返回