搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合振动控制的柱面纵向梯度线圈目标场设计方法

胡格丽 倪志鹏 王秋良

引用本文:
Citation:

结合振动控制的柱面纵向梯度线圈目标场设计方法

胡格丽, 倪志鹏, 王秋良

A target field method for designing cylindrical z-gradient coil combined with vibration control

Hu Ge-Li, Ni Zhi-Peng, Wang Qiu-Liang
PDF
导出引用
  • 在磁共振成像系统的工作过程中,噪声主要是由梯度线圈系统产生的. 梯度线圈置于高均匀度超导磁体的室温孔内,并工作于脉冲状态,频繁的开启和关闭会使线圈中电流急剧随时间变化,变化的电流导致线圈受到变化的洛伦兹力作用,从而产生振动,这种高频振动所发出的噪声会对病人产生刺激,严重时甚至会对病人的听觉神经产生损伤. 梯度场的场强越强、切换速度越快,所产生的噪声就越大. 降低噪声的最根本方法是通过有效的梯度线圈设计,降低洛伦兹力的空间分布. 本文针对纵向梯度线圈,在原经典目标场设计方法基础上,加入对振动参量,从而能够有效地降低线圈工作时所产生的噪声. 其具体方法是将振动控制函数作为约束条件,通过目标场法建立数学模型,利用MATLAB进行电磁验算. 计算结果表明,所提数学模型可有效地降低线圈振动的最大振幅.
    During the scanning of magnetic resonance imaging (MRI) system, the main acoustic noise source comes from the gradient coils. The gradient coils are turned on and off repeatedly, thus producing noise within the coil. With increasing magnetic field strength, the noise also increases. The primary method to reduce the noise is to decrease the distribution of the Lorentz forces. Target field (TF) method is very important for designing gradient coils which have been used in MRI and other applications. Many works based on the Turner’s traditional TF method have been proposed. In this paper, a target field method combined with vibration control has been presented to analyze the deflection of a cylindrical z-gradient coil because of the Lorentz forces. Simulation results via Matlab show that the maximum vibration amplitude can be reduced effectively by the new design method proposed in this paper.
    • 基金项目: 国家自然科学基金(批准号:10755001,50925726)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50925726, 50577063).
    [1]

    Li L K, Wang H S, Ni Z P, Cheng J S, Wang Q L 2013 Acta Phys. Sin. 62 058403 (in Chinese) [李兰凯, 王厚生, 倪志鹏, 程军胜, 王秋良 2013 物理学报 62 058403]

    [2]

    Wang Q L 2013 Progress in Physics 33 1

    [3]

    Jackson J M, Brideson M A, Forbes L K, Crozier S 2010 Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 37B 167

    [4]

    Brideson M A, Forbes L K, Jackson J, Crozier S 2008 ANZIAM 49 C423

    [5]

    Forbes L K, Brideson M A, Crozier S, While P T 2007 Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 31B 218

    [6]

    Forbes L K, Brideson M A, Crozier S, While P T 2007 ANZIAM J. 49 C17

    [7]

    Turner R 1986 Physics D: Applied Physics 19 L147

    [8]

    Turner R 1993 Magnetic Resonance Imaging 11 903

    [9]

    Forbes L K, Crozier S 2001 Physics D: Applied Physics 34 3447

    [10]

    Forbes L K, Crozier S 2002 Physics D: Applied Physics 35 839

    [11]

    Forbes L K, Crozier S 2003 Physics D: Applied Physics 36 68

    [12]

    Liu W T, Zu D L, Tang X, Guo H 2007 Physics D: Applied Physics 40 4418

    [13]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701

    [14]

    You X F, Yang W H, Song T, Hu L L, Wang H X 2011 Bioelectronics and Bioinformatics, Suzhou, China Nov 3–5, 2011, p115

    [15]

    Wang Q L 2007 (Beijing: Science Press) p118–128 (in Chinese) [王秋良 2007 高磁场超导磁体科学(北京: 科学出版社)第118–128页]

    [16]

    Wang Q L 2013 Practical Design of Magnetostatic Structure Using Numerical Simulation (Singapore: Wiley) pp400–411

    [17]

    Brideson M A, Forbes L K 2002 Concepts in Magnetic Resonance 14 9

  • [1]

    Li L K, Wang H S, Ni Z P, Cheng J S, Wang Q L 2013 Acta Phys. Sin. 62 058403 (in Chinese) [李兰凯, 王厚生, 倪志鹏, 程军胜, 王秋良 2013 物理学报 62 058403]

    [2]

    Wang Q L 2013 Progress in Physics 33 1

    [3]

    Jackson J M, Brideson M A, Forbes L K, Crozier S 2010 Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 37B 167

    [4]

    Brideson M A, Forbes L K, Jackson J, Crozier S 2008 ANZIAM 49 C423

    [5]

    Forbes L K, Brideson M A, Crozier S, While P T 2007 Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 31B 218

    [6]

    Forbes L K, Brideson M A, Crozier S, While P T 2007 ANZIAM J. 49 C17

    [7]

    Turner R 1986 Physics D: Applied Physics 19 L147

    [8]

    Turner R 1993 Magnetic Resonance Imaging 11 903

    [9]

    Forbes L K, Crozier S 2001 Physics D: Applied Physics 34 3447

    [10]

    Forbes L K, Crozier S 2002 Physics D: Applied Physics 35 839

    [11]

    Forbes L K, Crozier S 2003 Physics D: Applied Physics 36 68

    [12]

    Liu W T, Zu D L, Tang X, Guo H 2007 Physics D: Applied Physics 40 4418

    [13]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701

    [14]

    You X F, Yang W H, Song T, Hu L L, Wang H X 2011 Bioelectronics and Bioinformatics, Suzhou, China Nov 3–5, 2011, p115

    [15]

    Wang Q L 2007 (Beijing: Science Press) p118–128 (in Chinese) [王秋良 2007 高磁场超导磁体科学(北京: 科学出版社)第118–128页]

    [16]

    Wang Q L 2013 Practical Design of Magnetostatic Structure Using Numerical Simulation (Singapore: Wiley) pp400–411

    [17]

    Brideson M A, Forbes L K 2002 Concepts in Magnetic Resonance 14 9

计量
  • 文章访问数:  2244
  • PDF下载量:  692
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-07
  • 修回日期:  2013-10-10
  • 刊出日期:  2014-01-05

结合振动控制的柱面纵向梯度线圈目标场设计方法

  • 1. 中国科学院电工研究所, 北京 100190;
  • 2. 中国科学院大学, 北京 100049
    基金项目: 

    国家自然科学基金(批准号:10755001,50925726)资助的课题.

摘要: 在磁共振成像系统的工作过程中,噪声主要是由梯度线圈系统产生的. 梯度线圈置于高均匀度超导磁体的室温孔内,并工作于脉冲状态,频繁的开启和关闭会使线圈中电流急剧随时间变化,变化的电流导致线圈受到变化的洛伦兹力作用,从而产生振动,这种高频振动所发出的噪声会对病人产生刺激,严重时甚至会对病人的听觉神经产生损伤. 梯度场的场强越强、切换速度越快,所产生的噪声就越大. 降低噪声的最根本方法是通过有效的梯度线圈设计,降低洛伦兹力的空间分布. 本文针对纵向梯度线圈,在原经典目标场设计方法基础上,加入对振动参量,从而能够有效地降低线圈工作时所产生的噪声. 其具体方法是将振动控制函数作为约束条件,通过目标场法建立数学模型,利用MATLAB进行电磁验算. 计算结果表明,所提数学模型可有效地降低线圈振动的最大振幅.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回