搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光波长对拉曼散射水温遥感系统测温精度及探测深度的影响

任秀云 田兆硕 孙兰君 付石友

引用本文:
Citation:

激光波长对拉曼散射水温遥感系统测温精度及探测深度的影响

任秀云, 田兆硕, 孙兰君, 付石友

Effects of laser wavelength on both water temperature measurement precision and detection depth of Raman scattering lidar system

Ren Xiu-Yun, Tian Zhao-Shuo, Sun Lan-Jun, Fu Shi-You
PDF
导出引用
  • 机载激光拉曼散射雷达技术可以快速获取次表层海水温度的三维分布,具有重要的实用价值和经济价值. 首先,从理论上分析了水的伸缩振动拉曼谱峰值位置和半高全宽与激发波长之间的对应关系,发现随着激发波长的增大,拉曼峰逐渐向长波方向移动,且拉曼光谱半高全宽显著增大. 然后,实验测量了不同温度下450 nm激光和532 nm激光激发的水的拉曼光谱,对比验证了上述理论分析结果. 并采用单高斯峰拟合法分析了两组拉曼光谱,拟合出高斯峰峰值位置与温度之间的关系,分析了激发波长对温度测量精度的影响. 研究发现,采用较长波长的激发光可以提高拉曼光谱的测量精度,从而改善测温精度. 最后,建立了拉曼散射雷达方程,分析了拉曼散射系数与激光波长之间的关系,研究了激光波长对雷达系统探测深度的影响. 结果表明,激光波长对雷达系统探测深度有很大的影响,采用480 nm以下波长的激光时雷达系统探测深度较大,而采用长波段激光时雷达系统探测深度会大幅降低. 实际系统设计中选取激光光源时需要综合考虑上述两方面的影响.
    Airborne Raman scattering laser lidar technology can measure the three-dimensional (3D) distribution of subsurface seawater temperature rapidly, and it has important social and economic values. In this paper, firstly, the relationship between Raman stretching vibration spectrum peak position and excitation wavelength, and the relationship between the full width half maximum (FWHM) of Raman stretching vibration spectrum and excitation wavelength are analyzed theoretically. The results show that as the excitation wavelength increases, Raman scattering peak gradually shifts toward longer wavelength and the Raman spectrum FWHM increases noticeably. Secondly, to verify the theoretical results, the Raman spectra at different water temperatures excited by 450 nm and 532 nm lasers are measured experimentally, and the fitting analyses of them by single Gauss peak fitting method are made, the relationship between Gauss peak wavelength and temperature is obtained, and the effect of laser wavelength on the temperature measurement precision is analyzed. It is found that larger excitation wavelength can increase Raman spectrum measurement accuracy, thereby improving the temperature measurement precision. Finally, the Raman scattering lidar equation is established, the Raman scattering coefficients and attenuation coefficients of different wavelength lasers are analyzed, and the corresponding effects of laser wavelength on the lidar system detection depth are studied. Results show that the lidar system detection depth is greatly influenced by the laser wavelength, lidar system with laser wavelength below 480 nm has a good detection ability, and large wavelength laser greatly reduces lidar system detection depth. The effects of laser wavelength on both temperature measurement precision and detection depth should be considered in the desigin of Raman scattering lidar system.
    • 基金项目: 国家自然科学基金(批准号:41306092)、山东省自然科学基金(批准号:ZR2013DQ026)、山东省科技攻关计划(批准号:2011GHY11514)和中央高等学校基本科研基金(批准号:HIT.NSRIF.2013139)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41306092), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013DQ026), the Science and Technology Key Program of Shandong Province, China (Grant No. 2011GHY11514), and the Fundamental Scientific Research Foundation for the Central Universities of China (Grant No. HIT.NSRIF.2013139).
    [1]

    Gu B, Zhang F S, Huang Y G, Fang X 2010 Chin. Phys. B 19 036101

    [2]

    Chang C H 1976 U.S. Patent 3986775

    [3]

    Leonard D A, Caputo B, Hoge F E 1979 Appl. Opt. 18 1732

    [4]

    Collins D J, Bell J A, Zanoni R, McDermid I S, Breckinridge J B, Sepulveda C A 1984 Proc. SPIE 489 247

    [5]

    Liu Z S, Ma J, Zhang J L, Chen W Z 1991 Proc. SPIE 1558 306

    [6]

    Liu Z S, Zhang J L, Chen W Z, Huang X S, Ma J 1992 Proc. SPIE 1633 321

    [7]

    Cecchi G, Raimondi V 1995 International Geoscience and Remote Sensing Symposium (Firenze: IEEE) p1741

    [8]

    Becucci M, Cavalieri S, Eramo R, Fini L, Materazzi M 1999 Laser Phys. 9 422

    [9]

    Shi S P, Zhang Q, Zhang L, Wang R, Zhu Z H, Jiang G, Fu Y B 2011 Chin. Phys. B 20 063102

    [10]

    Haltrin V I, Kattawar G W 1993 Appl. Opt. 32 5356

    [11]

    Han D, Chen L F, Li X X, Tao J H, Su L, Zou M M, Fan M 2013 Acta Phys. Sin. 62 109301 (in Chinese) [韩冬, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 范萌 2013 物理学报 62 109301]

    [12]

    David M C, Korenowski G M 1998 J. Chem. Phys. 108 2669

    [13]

    Sun Q 2009 Vib. Spectrosc. 51 213

    [14]

    Bartlett J S, Voss K J, Sathyendranath S, Vodacek A 1998 Appl. Opt. 37 3324

    [15]

    Austin R W, Petzold T J 1986 Opt. Eng. 25 471

  • [1]

    Gu B, Zhang F S, Huang Y G, Fang X 2010 Chin. Phys. B 19 036101

    [2]

    Chang C H 1976 U.S. Patent 3986775

    [3]

    Leonard D A, Caputo B, Hoge F E 1979 Appl. Opt. 18 1732

    [4]

    Collins D J, Bell J A, Zanoni R, McDermid I S, Breckinridge J B, Sepulveda C A 1984 Proc. SPIE 489 247

    [5]

    Liu Z S, Ma J, Zhang J L, Chen W Z 1991 Proc. SPIE 1558 306

    [6]

    Liu Z S, Zhang J L, Chen W Z, Huang X S, Ma J 1992 Proc. SPIE 1633 321

    [7]

    Cecchi G, Raimondi V 1995 International Geoscience and Remote Sensing Symposium (Firenze: IEEE) p1741

    [8]

    Becucci M, Cavalieri S, Eramo R, Fini L, Materazzi M 1999 Laser Phys. 9 422

    [9]

    Shi S P, Zhang Q, Zhang L, Wang R, Zhu Z H, Jiang G, Fu Y B 2011 Chin. Phys. B 20 063102

    [10]

    Haltrin V I, Kattawar G W 1993 Appl. Opt. 32 5356

    [11]

    Han D, Chen L F, Li X X, Tao J H, Su L, Zou M M, Fan M 2013 Acta Phys. Sin. 62 109301 (in Chinese) [韩冬, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 范萌 2013 物理学报 62 109301]

    [12]

    David M C, Korenowski G M 1998 J. Chem. Phys. 108 2669

    [13]

    Sun Q 2009 Vib. Spectrosc. 51 213

    [14]

    Bartlett J S, Voss K J, Sathyendranath S, Vodacek A 1998 Appl. Opt. 37 3324

    [15]

    Austin R W, Petzold T J 1986 Opt. Eng. 25 471

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [3] 刘娜, 王译, 李文波, 张丽艳, 何世坤, 赵建坤, 赵纪军. 外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究. 物理学报, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [4] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底. 物理学报, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [5] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法. 物理学报, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [6] 李斌, 罗时文, 余安澜, 熊东升, 王新兵, 左都罗. 共焦腔增强的空气拉曼散射. 物理学报, 2017, 66(19): 190703. doi: 10.7498/aps.66.190703
    [7] 刘瑞霞, 张明江, 张建忠, 刘毅, 靳宝全, 白清, 李哲哲. 一种利用布里渊增益谱边带解调提高布里渊光时域反射系统测温精度的方法. 物理学报, 2016, 65(24): 244203. doi: 10.7498/aps.65.244203
    [8] 李满, 戴志高, 应见见, 肖湘衡, 岳亚楠. 基于稳态电热拉曼技术的碳纳米管纤维导热系数测量及传热研究. 物理学报, 2015, 64(12): 126501. doi: 10.7498/aps.64.126501
    [9] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [10] 张洪玉, 张韶华, 梁鹤, 刘宇宏, 雒建斌. 纳米级润滑膜分子排列取向的拉曼光谱表征技术. 物理学报, 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [11] 王卫宁. 苏氨酸的太赫兹及拉曼光谱研究. 物理学报, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [12] 刘桃香, 唐新峰, 李 涵, 苏贤礼, 张清杰. Sm填充skutterudite化合物中填充原子扰动效应研究. 物理学报, 2008, 57(11): 7078-7082. doi: 10.7498/aps.57.7078
    [13] 胡 妮, 熊 锐, 魏 伟, 王自昱, 汪丽莉, 余祖兴, 汤五丰, 石 兢. 自旋梯状化合物Sr14(Cu1-yFey)24O41的拉曼散射谱研究. 物理学报, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [14] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [15] 刘国汉, 丁 毅, 朱秀红, 陈光华, 贺德衍. HW-MWECR-CVD法制备氢化微晶硅薄膜及其微结构研究. 物理学报, 2006, 55(11): 6147-6151. doi: 10.7498/aps.55.6147
    [16] 曹春芳, 吴惠桢, 斯剑霄, 徐天宁, 陈 静, 沈文忠. 分子束外延PbTe单晶薄膜的反常拉曼光谱研究. 物理学报, 2006, 55(4): 2021-2026. doi: 10.7498/aps.55.2021
    [17] 成 泽. 压电晶体拉曼散射的统一量子论. 物理学报, 2005, 54(11): 5435-5444. doi: 10.7498/aps.54.5435
    [18] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算. 物理学报, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [19] 张喜和, 姚治海, 李晓英, 李春明, 冯克成, 王兆民. 高保偏光纤前方受激拉曼散射光谱特性的研究. 物理学报, 2003, 52(4): 840-843. doi: 10.7498/aps.52.840
    [20] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究. 物理学报, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
计量
  • 文章访问数:  5818
  • PDF下载量:  839
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-31
  • 修回日期:  2014-04-05
  • 刊出日期:  2014-08-05

/

返回文章
返回