-
外尔半金属Td-WTe2是一种新型的拓扑量子材料, 具有很强的自旋轨道耦合作用和独特的拓扑能带结构, 被认为是一种非常有潜力的自旋电子材料. 通过构造WTe2/Ti异质结构, 能够解决原本在WTe2上无法直接制备出具有垂直磁各向异性铁磁层的难题. 与现有半导体工艺相兼容, 器件集成需要经受高温处理过程, 因此WTe2/Ti的热稳定性对于实际器件制备和应用至关重要. 然而, WTe2/Ti界面的热稳定性目前仍然不清楚. 本文利用显微拉曼散射技术系统研究了不同温度退火后的WTe2/Ti异质结的热稳定性, 发现WTe2和Ti的界面热稳定性与WTe2纳米片的厚度相关, WTe2纳米片厚度适当增加, WTe2/Ti异质结更加稳定. 此外, 高温退火会导致更加强烈的界面反应, 在473 K退火30 min后, WTe2 (12 nm)与Ti发生明显界面反应, 生成Ti-Te化合物, 该现象与高分辨透射电子显微镜测量和元素分析结果高度一致. 研究结果为进一步探究WTe2/Ti界面对于自旋轨道转矩效应的影响提供有用信息, 激发基于WTe2等拓扑材料的低功耗自旋器件研究.
-
关键词:
- 外尔半金属WTe2 /
- WTe2/Ti异质结 /
- 热稳定性 /
- 拉曼散射
Weyl semimetal Td-phase WTe2, a novel topological matter, possesses a strong spin-orbit coupling and non-trivial topological band structure, and thus becomes a very promising superior spin current source material. By constructing the WTe2/Ti heterostructures, the issue that the ferromagnetic layer with perpendicular magnetic anisotropy cannot be directly prepared on WTe2 layer can be well addressed, and meet the requirements for high-performance spin-orbit torque devices. To be compatible with the semiconductor technology, the device integration usually involves a high temperature process. Therefore, the thermal stability of WTe2/Ti is critical for practical device fabrication and performance. However, the thermal stability of WTe2/Ti interface has not been very clear yet. In this work, the micro-Raman scattering technique is used to systematically study the WTe2/Ti interface annealed at different temperatures. It is found that the thermal stability of the interface between WTe2 and Ti is related to the thickness of WTe2 flake; appropriate increase of the WTe2 thickness can lead to the improvement of thermal stability in WTe2/Ti heterostructures. In addition, high temperature annealing can cause a significant interfacial reaction. After annealed at 473 K for 30 min, the interface between WTe2 (12 nm) and Ti changes dramatically, leading to the formation of Ti-Te interface layer. This observation is highly consistent with the observations by high-resolution transmission electron microscopy and the elemental analysis results as well. This study will provide useful information for further exploring the influence of the WTe2/Ti interface on the spin-orbit torque effect, and greatly invigorate the research area of energy efficient spintronic devices based on WTe2 and other novel topological materials.-
Keywords:
- Weyl semimetal WTe2 /
- WTe2/Ti heterostructure /
- thermal stability /
- Raman scattering
[1] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar
[2] Berger L 1996 Phys. Rev. B 54 9353Google Scholar
[3] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar
[4] Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S N 2017 Mater. Today 20 530Google Scholar
[5] Lee K S, Lee S W, Min B C, Lee K J 2013 Appl. Phys. Lett. 102 112410Google Scholar
[6] Fukami S, Anekawa T, Zhang C, Ohno H 2016 Nat. Nanotechnol. 11 621Google Scholar
[7] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar
[8] Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar
[9] Wang Y, Deorani P, Qiu X P, Kwon J H, Yang H 2014 Appl. Phys. Lett. 105 152412Google Scholar
[10] Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar
[11] Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar
[12] Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202Google Scholar
[13] Wang Y, Zhu D P, Wu Y, Yang Y M, Yu J W, Ramaswamy R, Mishra R, Shi S Y, Elyasi M, Teo K L, Wu Y H, Yang H 2017 Nat. Commun. 8 1364Google Scholar
[14] Wang Y, Zhu D P, Yang Y M, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K M, Liu E, Pollard S D, Shi S Y, Lee J, Teo K L, Wu Y H, Lee K J, Yang H 2019 Science 366 1125Google Scholar
[15] Han X F, Wan C H, Yu G Q 2021 Appl. Phys. Lett. 118 180401Google Scholar
[16] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国 2021 物理学报 70 127501Google Scholar
He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y, Wang S G 2021 Acta Phys. Sin. 70 127501Google Scholar
[17] 强晓斌, 卢海舟 2021 物理学报 70 027201Google Scholar
Qiang X B, Lu H Z 2021 Acta Phys. Sin. 70 027201Google Scholar
[18] MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2017 Nat. Phys. 13 300Google Scholar
[19] MacNeill D, Stiehl G M, Guimaraes M H D, Reynolds N D, Buhrman R A, Ralph D C 2017 Phys. Rev. B 96 054450Google Scholar
[20] Shi S Y, Liang S H, Zhu Z F, Cai K M, Pollard S D, Wang Y, Wang J Y, Wang Q S, He P, Yu J W, Eda G, Liang G C, Yang H 2019 Nat. Nanotechnol. 14 945Google Scholar
[21] Li P F, Kang Y, Zhao Y B, Qin J H, Song W G 2018 ISA Trans. 80 1Google Scholar
[22] Shi S Y, Li J, Hsu C H, Lee K, Wang Y, Yang L, Wang J Y, Wang Q S, Wu H, Zhang W F, Eda G, Liang G C, Chang H X, Yang H 2021 Adv. Quantum Technol. 4 2100038Google Scholar
[23] Yang Y M, Xie H, Xu Y J, Luo Z Y, Wu Y H 2020 Phys. Rev. Appl. 13 034072Google Scholar
[24] Wu H, Zhang P, Deng P, Lan Q Q, Pan Q J, Razavi S A, Che X Y, Huang L, Dai B Q, Wong K, Han X F, Wang K L 2019 Phys. Rev. Lett. 123 207205Google Scholar
[25] Xie H, Talapatra A, Chen X, Luo Z Y, Wu Y H 2021 Appl. Phys. Lett. 118 042401Google Scholar
[26] Lee H Y, Kim S, Park J Y, Oh Y W, Park S Y, Ham W, Kotani Y, Nakamura T, Suzuki M, Ono T, Lee K J, Park B G 2019 APL Mater. 7 031110Google Scholar
[27] Zhang L Y, Liu N, Li W B, Luo L M, Wang Y 2022 Solid State Commun. 342 114620Google Scholar
[28] Ma X L, Guo P J, Yi C J, Yu Q H, Zhang A M, Ji J T, Tian Y, Jin F, Wang Y Y, Liu K, Xia T L, Shi Y G, Zhang Q M 2016 Phys. Rev. B 94 214105Google Scholar
[29] Kong W D, Wu S F, Richard P, Lian C S, Wang J T, Yang C L, Shi Y G, Ding H 2015 Appl. Phys. Lett. 106 081906Google Scholar
[30] Lv Y Y, Cao L, Li X, Zhang B B, Wang K, Pang B, Ma L G, Lin D J, Yao S H, Zhou J, Chen Y B, Dong S T, Liu W C, Lu M-H, Chen Y L, Chen Y F 2017 Sci. Rep. 7 44587Google Scholar
[31] Zhou Y H, Chen X L, Li N N, Zhang R R, Wang X F, An C, Zhou Y, Pan X C, Song F Q, Wang B G, Yang W G, Yang Z R, Zhang Y H 2016 AIP Adv. 6 075008Google Scholar
[32] Salmón Gamboa J U, Barajas Aguilar A H, Ruiz Ortega L I, Garay Tapia A M, Jiménez Sandoval S J 2018 Sci. Rep. 8 8093Google Scholar
[33] Cao Y, Sheremetyeva N, Liang L B, Yuan H, Zhong T T, Meunier V, Pan M H 2017 2 D Mater. 4 035024
[34] Kim M, Han S, Kim J H, Lee J U, Lee Z, Cheong H 2016 2 D Mater. 3 034004
[35] Cordes H, Schmidfetzer R 1995 J. Mater. Sci. -Mater. Electron. 6 118
[36] Cooley K A, Mohney S E 2019 J. Vac. Sci. Technol. A 37 061510Google Scholar
[37] Yu C C, Wu H J, Agne M T, Witting I T, Deng P Y, Snyder G J, Chu J P 2019 APL Mater. 7 013001Google Scholar
[38] Hangyo M, Nakashima S I, Mitsuishi A 1983 Ferroelectrics 52 151Google Scholar
[39] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V, Narayana C 2018 Phys. Rev. B 97 085107Google Scholar
[40] Ding H, Xu B 2012 J. Chem. Phys. 137 224509Google Scholar
[41] Khan J, Nolen C M, Teweldebrhan D, Wickramaratne D, Lake R K, Balandin A A 2012 Appl. Phys. Lett. 100 043109Google Scholar
-
图 1 (a) 外尔半金属Td-WTe2单晶的晶体结构示意图; (b)机械剥离的WTe2纳米片的光学显微镜照片; (c) 机械剥离的WTe2纳米片的室温拉曼光谱图, 测量区域为图(b)中红色虚线框所示
Fig. 1. (a) Schematic diagram of the crystal structure of Weyl semimetal Td-WTe2 single crystal; (b) optical image of mechanically exfoliated WTe2 flake; (c) room temperature Raman spectra of mechanically exfoliated WTe2 flake, the measurement area is indicated by the red dashed box in panel (b).
图 2 (a) WTe2/Ti异质结的光学显微镜照片, 图中①—⑤代表具有不同WTe2厚度的异质结区域; (b) AFM扫描图, 测量区域为图(a)中红色虚线框所示; (c)从AFM扫描图中沿着红色虚线的异质结台阶高度图
Fig. 2. (a) Optical image of WTe2/Ti heterostructures with different WTe2 thickness denoted by ①–⑤; (b) AFM image of WTe2/Ti heterostructure, the scanned area is denoted by the red dashed box in panel (a); (c) the height of one WTe2/Ti step along the red dashed line in panel (b).
图 3 室温下WTe2 (12—32 nm)/Ti异质结的(a) 非偏振拉曼光谱图, (b) 垂直偏振拉曼光谱图, (c) 平行偏振拉曼光谱图. 图中数字代表不同的WTe2厚度, “WTe2”代表机械剥离的WTe2单晶对照样品, 其厚度大于100 nm
Fig. 3. (a) Unpolarized Raman spectra, (b) vertically polarized Raman spectra, and (c) parallel polarized Raman spectra of WTe2 (12–32 nm)/Ti heterostructures at room temperature. The numbers in all figures represent WTe2 thickness, “WTe2” denotes the mechanically exfoliated WTe2 single crystal with thickness larger than 100 nm.
图 4 不同温度退火的WTe2 (12—32 nm)/Ti异质结的室温拉曼光谱 (a) WTe2 (12 nm)/Ti异质结分别在制备态和323—523 K退火后的非偏振拉曼光谱图; (b) WTe2 (12 nm)/Ti异质结在473 K退火后界面反应生成Ti-Te化合物的非偏振拉曼光谱放大图; (c) WTe2 (32 nm)/Ti异质结分别在制备态和 323—523 K退火后的非偏振拉曼光谱图; (d) WTe2 (12, 18, 19, 20, 32 nm)/Ti异质结退火后界面生成Ti-Te的拉曼峰峰强随着退火温度的变化曲线
Fig. 4. Room temperature Raman spectra of WTe2 (12–32 nm)/Ti heterostructures annealed at different temperatures: (a) Unpolarized Raman spectra of WTe2 (12 nm)/Ti heterostructure at as-grown state and annealed at 323-523 K, respectively; (b) enlarged unpolarized Raman spectra of Ti-Te interfacial reaction layer in WTe2 (12 nm)/Ti heterostructure annealed at 473 K; (c) unpolarized Raman spectra of WTe2 (32 nm)/Ti heterostructure at as-grown state and annealed at 323–523 K, respectively; (d) Raman intensity of the Ti-Te interfacial reaction layer in WTe2 (12, 18, 19, 20, 32 nm)/Ti heterostructures as a function of the annealing temperature.
图 5 (a) WTe2/Ti (30 nm) 异质结的高分辨TEM图片, 样品在473 K退火30 min; (b) 放大的WTe2/Ti界面高分辨TEM图片; (c) EDS元素分析图像; (d) 沿着图 (c) 中箭头方向的EDS线扫结果
Fig. 5. (a) High-resolution TEM image of WTe2/Ti (30 nm) heterostructure annealed at 473 K for 30 min; (b) enlarged high-resolution TEM image of WTe2/Ti interface; (c) EDS mapping image; (d) EDS line scanning along the arrow direction in panel (c).
-
[1] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar
[2] Berger L 1996 Phys. Rev. B 54 9353Google Scholar
[3] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar
[4] Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S N 2017 Mater. Today 20 530Google Scholar
[5] Lee K S, Lee S W, Min B C, Lee K J 2013 Appl. Phys. Lett. 102 112410Google Scholar
[6] Fukami S, Anekawa T, Zhang C, Ohno H 2016 Nat. Nanotechnol. 11 621Google Scholar
[7] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar
[8] Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar
[9] Wang Y, Deorani P, Qiu X P, Kwon J H, Yang H 2014 Appl. Phys. Lett. 105 152412Google Scholar
[10] Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar
[11] Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar
[12] Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202Google Scholar
[13] Wang Y, Zhu D P, Wu Y, Yang Y M, Yu J W, Ramaswamy R, Mishra R, Shi S Y, Elyasi M, Teo K L, Wu Y H, Yang H 2017 Nat. Commun. 8 1364Google Scholar
[14] Wang Y, Zhu D P, Yang Y M, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K M, Liu E, Pollard S D, Shi S Y, Lee J, Teo K L, Wu Y H, Lee K J, Yang H 2019 Science 366 1125Google Scholar
[15] Han X F, Wan C H, Yu G Q 2021 Appl. Phys. Lett. 118 180401Google Scholar
[16] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国 2021 物理学报 70 127501Google Scholar
He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y, Wang S G 2021 Acta Phys. Sin. 70 127501Google Scholar
[17] 强晓斌, 卢海舟 2021 物理学报 70 027201Google Scholar
Qiang X B, Lu H Z 2021 Acta Phys. Sin. 70 027201Google Scholar
[18] MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2017 Nat. Phys. 13 300Google Scholar
[19] MacNeill D, Stiehl G M, Guimaraes M H D, Reynolds N D, Buhrman R A, Ralph D C 2017 Phys. Rev. B 96 054450Google Scholar
[20] Shi S Y, Liang S H, Zhu Z F, Cai K M, Pollard S D, Wang Y, Wang J Y, Wang Q S, He P, Yu J W, Eda G, Liang G C, Yang H 2019 Nat. Nanotechnol. 14 945Google Scholar
[21] Li P F, Kang Y, Zhao Y B, Qin J H, Song W G 2018 ISA Trans. 80 1Google Scholar
[22] Shi S Y, Li J, Hsu C H, Lee K, Wang Y, Yang L, Wang J Y, Wang Q S, Wu H, Zhang W F, Eda G, Liang G C, Chang H X, Yang H 2021 Adv. Quantum Technol. 4 2100038Google Scholar
[23] Yang Y M, Xie H, Xu Y J, Luo Z Y, Wu Y H 2020 Phys. Rev. Appl. 13 034072Google Scholar
[24] Wu H, Zhang P, Deng P, Lan Q Q, Pan Q J, Razavi S A, Che X Y, Huang L, Dai B Q, Wong K, Han X F, Wang K L 2019 Phys. Rev. Lett. 123 207205Google Scholar
[25] Xie H, Talapatra A, Chen X, Luo Z Y, Wu Y H 2021 Appl. Phys. Lett. 118 042401Google Scholar
[26] Lee H Y, Kim S, Park J Y, Oh Y W, Park S Y, Ham W, Kotani Y, Nakamura T, Suzuki M, Ono T, Lee K J, Park B G 2019 APL Mater. 7 031110Google Scholar
[27] Zhang L Y, Liu N, Li W B, Luo L M, Wang Y 2022 Solid State Commun. 342 114620Google Scholar
[28] Ma X L, Guo P J, Yi C J, Yu Q H, Zhang A M, Ji J T, Tian Y, Jin F, Wang Y Y, Liu K, Xia T L, Shi Y G, Zhang Q M 2016 Phys. Rev. B 94 214105Google Scholar
[29] Kong W D, Wu S F, Richard P, Lian C S, Wang J T, Yang C L, Shi Y G, Ding H 2015 Appl. Phys. Lett. 106 081906Google Scholar
[30] Lv Y Y, Cao L, Li X, Zhang B B, Wang K, Pang B, Ma L G, Lin D J, Yao S H, Zhou J, Chen Y B, Dong S T, Liu W C, Lu M-H, Chen Y L, Chen Y F 2017 Sci. Rep. 7 44587Google Scholar
[31] Zhou Y H, Chen X L, Li N N, Zhang R R, Wang X F, An C, Zhou Y, Pan X C, Song F Q, Wang B G, Yang W G, Yang Z R, Zhang Y H 2016 AIP Adv. 6 075008Google Scholar
[32] Salmón Gamboa J U, Barajas Aguilar A H, Ruiz Ortega L I, Garay Tapia A M, Jiménez Sandoval S J 2018 Sci. Rep. 8 8093Google Scholar
[33] Cao Y, Sheremetyeva N, Liang L B, Yuan H, Zhong T T, Meunier V, Pan M H 2017 2 D Mater. 4 035024
[34] Kim M, Han S, Kim J H, Lee J U, Lee Z, Cheong H 2016 2 D Mater. 3 034004
[35] Cordes H, Schmidfetzer R 1995 J. Mater. Sci. -Mater. Electron. 6 118
[36] Cooley K A, Mohney S E 2019 J. Vac. Sci. Technol. A 37 061510Google Scholar
[37] Yu C C, Wu H J, Agne M T, Witting I T, Deng P Y, Snyder G J, Chu J P 2019 APL Mater. 7 013001Google Scholar
[38] Hangyo M, Nakashima S I, Mitsuishi A 1983 Ferroelectrics 52 151Google Scholar
[39] Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V, Narayana C 2018 Phys. Rev. B 97 085107Google Scholar
[40] Ding H, Xu B 2012 J. Chem. Phys. 137 224509Google Scholar
[41] Khan J, Nolen C M, Teweldebrhan D, Wickramaratne D, Lake R K, Balandin A A 2012 Appl. Phys. Lett. 100 043109Google Scholar
计量
- 文章访问数: 6457
- PDF下载量: 126
- 被引次数: 0