搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu, Zn离子注入SiO2纳米颗粒合成及氧气氛围下的热稳定性研究

许蓉 贾光一 刘昌龙

引用本文:
Citation:

Cu, Zn离子注入SiO2纳米颗粒合成及氧气氛围下的热稳定性研究

许蓉, 贾光一, 刘昌龙

Synthesis of nanoparticles in SiO2 by implantation of Cu and Zn ions and their thermal stability in oxygen atmoshphere

Xu Rong, Jia Guang-Yi, Liu Chang-Long
PDF
导出引用
  • 通过45 keV,1.01017 cm-2的Cu离子注入SiO2基底合成了嵌入式的Cu纳米颗粒,采用不同剂量的50 keV Zn离子对Cu纳米颗粒进行后续辐照,详细研究了Zn离子后续辐照对Cu纳米颗粒结构、光学性质的影响及其氧气气氛下的热演变规律. 研究结果表明,Cu和0.51017 cm-2的Zn离子顺次注入可在SiO2基底中形成Cu-Zn合金纳米颗粒,它们可以在516 nm附近引起独特的表面等离子共振(SPR)吸收峰. 后续O2气氛中450 ℃退火可以导致Cu-Zn 合金纳米颗粒分解,并在基体中形成了ZnO和Cu纳米颗粒. 研究结果还表明后续Zn离子的辐照可以有效地提高Cu纳米颗粒的抗氧化能力;同时基体中Cu 的存在也会加速Zn向样品表面的扩散,从而促进了ZnO 的形成.
    Cu nanoparticles (NPs) embedded in silica were synthesized by implantation of 45 keV Cu ions at a fluence of 1.01017 cm-2, and then subjected to post irradiation with 50 keV Zn ions at fluences of 0.51017 cm-2 and 1.01017 cm-2, respectively. Zn post ion implantation induced modifications in structures, optical absorption properties of Cu NPs as well as their thermal stability in oxygen ambient have been investigated in detail. Results clearly show that Cu-Zn alloy NPs could be formed in the Cu pre-implanted silica followed by Zn ion irradiation at a fluence of 0.51017 cm-2, which causes an unique surface plasmon resonance (SPR) absorption peak at about 516 nm. Subsequent annealing in oxygen atmosphere results in the decomposition of Cu-Zn alloy NPs, at 450 ℃, and thus, ZnO and Cu NPs appear in the substrate. Further increase of annealing temperature to 550 ℃ could transform all the Zn and Cu into ZnO and CuO. Moreover, results also demonstrate that introduction of Zn into SiO2 substrate could effectively suppress the oxidation of Cu NPs, meanwhile, the existence of Cu could promote thermal diffusion of Zn towards substrate surface, which enhances the oxidation of Zn. The underlying mechanism has been discussed.
    • 基金项目: 国家自然科学基金(批准号:11175129,11175235)和天津市自然科学基金(批准号:12JCZDJC26900)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175129, 11175235), and the Natural Science Foundation of Tianjin, China (Grant No. 12JCZDJC26900).
    [1]

    Zhao C H, Zhang B P, Shang P P 2009 Chin. Phys. B 18 5539

    [2]

    Daniel M C, Astruc D 2004 Chem. Rev. 104 293

    [3]

    Inouye H, Tanaka K, Tanahashi I, Hattori T, Nakatsuka H 2000 Jpn. J. Appl. Phys. 39 5132

    [4]

    Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H, Zhao Y 2010 Chin. Phys. B 19 047304

    [5]

    Stepanov A L 2010 Rev. Adv. Mater. Sci. 26 1

    [6]

    Liu X F, Jiang C Z, Ren F, Fu Q 2005 Acta Phys. Sin. 54 4633 (in Chinese)[刘向绯, 蒋昌忠, 任峰, 付强2005 物理学报54 4633]

    [7]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [8]

    Peña O, Pal U, Rodríguez-Fernández L, Silva-Pereyra H G, Rodríguez-Iglesias V, Cheang-Wong J C, Arenas-Alatorre J, Oliver A 2009 J. Phys. Chem. C 113 2296

    [9]

    Mattei G, Maurizio C, Mazzoldi P, D’Acapito F, Battaglin G, Cattaruzza E, de Julián Fernández C, Sada C 2005 Phys. Rev. B 71 195418

    [10]

    Mattei G, De Marchi G, Maurizio C, Mazzoldi P, Sads C, Bello V, Battaglin G 2003 Phys. Rev. Lett. 90 085502

    [11]

    Zhang L, Jiang C Z, Ren F, Chen H B, Shi Y, Fu Q 2004 Acta Phys. Sin. 53 2910 (in Chinese)[张丽, 蒋昌忠, 任峰, 陈海波, 石瑛, 付强2004 物理学报53 2910]

    [12]

    Wang J, Zhang L H, Zhang X D, Shen Y Y, Liu C L 2013 J. Alloy. Compd. 549 231

    [13]

    Tang Q G, Meng J P, Liang J S, Nie L, Li Y X 2010 J. Alloy. Compd. 491 242

    [14]

    Xi J Y, Wang Z F, Lu G X 2002 Appl. Catal. A 225 77

    [15]

    Stepanov A L, Zhikharev V A, Hole D E, Townsend P D, Khaibullin I B 2000 Nucl. Instrum. Methods Phys. Res. B 166-167 26

    [16]

    Gnaser H, Brodyanski A, Reuscher B 2008 Surf. Interface Anal. 40 1415

    [17]

    Zhang X D, Xi J F, Shen Y Y, Zhang L H, Zhu F, Wang Z, Xue Y H, Liu C L 2011 Opt. Mater. 33 570

    [18]

    Shen Y Y, Zhang X D, Zhang D C, Xue Y H, Zhang L H, Liu C L 2011 Mater. Lett. 65 2966

    [19]

    Wang Y H, Li H Q, Lu J D, Wang R W 2011 Chin. Phys. Lett. 28 116101

    [20]

    Marshall C D, Speth J A, Payne S A 1997 J. Non-Cryst. Solids 212 59

    [21]

    Hume-Rothery W, Mabbott G W, Evans K M C 1934 Phil. Trans. R. Soc. 233 1

    [22]

    Pickering H W, Wagner C 1967 J. Electrochem. Soc. 114 698

    [23]

    Yazawa A, Gubčová A 1970 Trans. JIM 11 419

    [24]

    Amekura H, Kono K, Takeda Y, Kishimoto N 2005 Appl. Phys. Lett. 87 153105

    [25]

    Amekura H, Umeda N, Sakuma Y, Plaksin O A, Takeda Y, Kishimoto N, Buchal C 2006 Appl. Phys. Lett. 88 153119

    [26]

    Sun X F, Wei C P, Li Q Y 2009 Acta Phys. Sin. 58 5816 (in Chinese)[孙小飞, 魏长平, 李启源2009 物理学报 58 5816]

    [27]

    Volkert C A, Minor A M 2007 MRS Bull. 32 389

    [28]

    Chao L C, Lin S J, Chang W C 2010 Nucl. Instrum. Methods Phys. Res. B 268 1581

  • [1]

    Zhao C H, Zhang B P, Shang P P 2009 Chin. Phys. B 18 5539

    [2]

    Daniel M C, Astruc D 2004 Chem. Rev. 104 293

    [3]

    Inouye H, Tanaka K, Tanahashi I, Hattori T, Nakatsuka H 2000 Jpn. J. Appl. Phys. 39 5132

    [4]

    Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H, Zhao Y 2010 Chin. Phys. B 19 047304

    [5]

    Stepanov A L 2010 Rev. Adv. Mater. Sci. 26 1

    [6]

    Liu X F, Jiang C Z, Ren F, Fu Q 2005 Acta Phys. Sin. 54 4633 (in Chinese)[刘向绯, 蒋昌忠, 任峰, 付强2005 物理学报54 4633]

    [7]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [8]

    Peña O, Pal U, Rodríguez-Fernández L, Silva-Pereyra H G, Rodríguez-Iglesias V, Cheang-Wong J C, Arenas-Alatorre J, Oliver A 2009 J. Phys. Chem. C 113 2296

    [9]

    Mattei G, Maurizio C, Mazzoldi P, D’Acapito F, Battaglin G, Cattaruzza E, de Julián Fernández C, Sada C 2005 Phys. Rev. B 71 195418

    [10]

    Mattei G, De Marchi G, Maurizio C, Mazzoldi P, Sads C, Bello V, Battaglin G 2003 Phys. Rev. Lett. 90 085502

    [11]

    Zhang L, Jiang C Z, Ren F, Chen H B, Shi Y, Fu Q 2004 Acta Phys. Sin. 53 2910 (in Chinese)[张丽, 蒋昌忠, 任峰, 陈海波, 石瑛, 付强2004 物理学报53 2910]

    [12]

    Wang J, Zhang L H, Zhang X D, Shen Y Y, Liu C L 2013 J. Alloy. Compd. 549 231

    [13]

    Tang Q G, Meng J P, Liang J S, Nie L, Li Y X 2010 J. Alloy. Compd. 491 242

    [14]

    Xi J Y, Wang Z F, Lu G X 2002 Appl. Catal. A 225 77

    [15]

    Stepanov A L, Zhikharev V A, Hole D E, Townsend P D, Khaibullin I B 2000 Nucl. Instrum. Methods Phys. Res. B 166-167 26

    [16]

    Gnaser H, Brodyanski A, Reuscher B 2008 Surf. Interface Anal. 40 1415

    [17]

    Zhang X D, Xi J F, Shen Y Y, Zhang L H, Zhu F, Wang Z, Xue Y H, Liu C L 2011 Opt. Mater. 33 570

    [18]

    Shen Y Y, Zhang X D, Zhang D C, Xue Y H, Zhang L H, Liu C L 2011 Mater. Lett. 65 2966

    [19]

    Wang Y H, Li H Q, Lu J D, Wang R W 2011 Chin. Phys. Lett. 28 116101

    [20]

    Marshall C D, Speth J A, Payne S A 1997 J. Non-Cryst. Solids 212 59

    [21]

    Hume-Rothery W, Mabbott G W, Evans K M C 1934 Phil. Trans. R. Soc. 233 1

    [22]

    Pickering H W, Wagner C 1967 J. Electrochem. Soc. 114 698

    [23]

    Yazawa A, Gubčová A 1970 Trans. JIM 11 419

    [24]

    Amekura H, Kono K, Takeda Y, Kishimoto N 2005 Appl. Phys. Lett. 87 153105

    [25]

    Amekura H, Umeda N, Sakuma Y, Plaksin O A, Takeda Y, Kishimoto N, Buchal C 2006 Appl. Phys. Lett. 88 153119

    [26]

    Sun X F, Wei C P, Li Q Y 2009 Acta Phys. Sin. 58 5816 (in Chinese)[孙小飞, 魏长平, 李启源2009 物理学报 58 5816]

    [27]

    Volkert C A, Minor A M 2007 MRS Bull. 32 389

    [28]

    Chao L C, Lin S J, Chang W C 2010 Nucl. Instrum. Methods Phys. Res. B 268 1581

  • [1] 刘骏杭, 朱照照, 毕林竹, 王鹏举, 蔡建旺. 重金属缓冲层和覆盖层对TbFeCo超薄膜磁性及热稳定性的影响. 物理学报, 2023, 72(7): 077501. doi: 10.7498/aps.72.20222239
    [2] 康亚斌, 袁小朋, 王晓波, 李克伟, 宫殿清, 程旭东. 分层化金属陶瓷光热转换涂层的微结构构筑与热稳定性. 物理学报, 2023, 72(5): 057103. doi: 10.7498/aps.72.20221693
    [3] 刘娜, 王译, 李文波, 张丽艳, 何世坤, 赵建坤, 赵纪军. 外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究. 物理学报, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [4] 王晓波, 李克伟, 高丽娟, 程旭东, 蒋蓉. 耐高温CrAlON基太阳能光谱选择性吸收涂层的制备与热稳定性. 物理学报, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [5] 朱小芹, 胡益丰. Ge50Te50/Zn15Sb85纳米复合多层薄膜在高热稳定性和低功耗相变存储器中的应用. 物理学报, 2020, 69(14): 146101. doi: 10.7498/aps.69.20200502
    [6] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [7] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究. 物理学报, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [8] 鲁东, 金冬月, 张万荣, 张瑜洁, 付强, 胡瑞心, 高栋, 张卿远, 霍文娟, 周孟龙, 邵翔鹏. 新型宽温区高热稳定性微波功率SiGe 异质结双极晶体管. 物理学报, 2013, 62(10): 104401. doi: 10.7498/aps.62.104401
    [9] 周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究. 物理学报, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [10] 崔晓, 徐保臣, 王知鸷, 王丽芳, 张博, 祖方遒. 1 at% Ag替代Zr57Cu20Al10Ni8Ti5 金属玻璃中各组元对玻璃形成能力及热稳定性的作用分析. 物理学报, 2013, 62(1): 016101. doi: 10.7498/aps.62.016101
    [11] 张章, 熊贤仲, 乙姣姣, 李金富. Al-Ni-RE非晶合金的晶化行为和热稳定性. 物理学报, 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [12] 张杨, 宋晓艳, 徐文武, 张哲旭. SmCo7纳米晶合金晶粒组织热稳定性的热力学分析与计算机模拟. 物理学报, 2012, 61(1): 016102. doi: 10.7498/aps.61.016102
    [13] 张颖, 何智兵, 李萍, 闫建成. 硅掺杂辉光放电聚合物薄膜的热稳定性研究. 物理学报, 2011, 60(12): 126501. doi: 10.7498/aps.60.126501
    [14] 许雪芹, 汤晨毅, 王璇, 程玲, 姚忻. 面内和面外取向对RBa2Cu3Oz薄膜热稳定性影响的研究. 物理学报, 2010, 59(2): 1294-1301. doi: 10.7498/aps.59.1294
    [15] 闫建成, 何智兵, 阳志林, 陈志梅, 唐永建, 韦建军. 玻璃微球表面辉光等离子体聚合物涂层的热稳定性研究. 物理学报, 2010, 59(11): 8005-8009. doi: 10.7498/aps.59.8005
    [16] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [17] 张旭东, 徐铁峰, 聂秋华, 戴世勋, 沈 祥, 陆龙君, 章向华. Er3+/Yb3+共掺碲硼硅酸盐玻璃的光谱性质和热稳定性研究. 物理学报, 2007, 56(3): 1758-1764. doi: 10.7498/aps.56.1758
    [18] 沈 祥, 聂秋华, 徐铁峰, 高 媛. Er3+/Yb3+共掺碲钨酸盐玻璃的光谱性质和热稳定性的研究. 物理学报, 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [19] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [20] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联. 物理学报, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
计量
  • 文章访问数:  6396
  • PDF下载量:  646
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-22
  • 修回日期:  2014-01-01
  • 刊出日期:  2014-04-05

/

返回文章
返回