搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性效应对前向受激布里渊散射分布式传感的影响

杨玉莲 刘黎明 邓庆雪 贾新鸿 梁文燕 姜利 宋伟杰 牟欣扬

引用本文:
Citation:

非线性效应对前向受激布里渊散射分布式传感的影响

杨玉莲, 刘黎明, 邓庆雪, 贾新鸿, 梁文燕, 姜利, 宋伟杰, 牟欣扬

Influence of nonlinear effects on forward stimulated Brillouin scattering distributed sensing

Yang Yu-Lian, Liu Li-Ming, Deng Qing-Xue, Jia Xin-Hong, Liang Wen-Yan, Jiang Li, Song Wei-Jie, Mou Xin-Yang
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 以光力时域分析传感器为例, 实验研究了非线性效应对前向受激布里渊散射分布式传感的影响, 并给出了优化过程. 前向受激布里渊散射的产生由于增益系数低, 需要较高的脉冲功率(W级)进行激发, 由于读取脉冲光与散射光同向传输特性, 高功率脉冲将诱发前向受激布里渊散射传感系统中各种非线性效应. 借鉴前人激活-读取分离技术, 可有效避免激活脉冲非线性效应的影响, 然而读取脉冲非线性效应对传感性能仍存在直接影响. 基于此, 本文研究了不同读取脉冲功率条件下, 非线性效应对前向受激布里渊散射传感性能的影响及其物理机理; 具体展示了~4.7 km 标准单模光纤中, 一、二阶散射边带随读取脉冲功率的演化过程, 最终找到了优化区间, 得到较为完美的本地增益谱, 并且延长了传感距离.
    The influences of nonlinear effects on sensing performance of forward stimulated Brillouin scattering (FSBS) are investigated using opto-mechanical time-domain analysis sensor, which is taken for example. The excitation of FSBS often requires high pulse power (at Watt level) because of the lower gain coefficient. Owing to the co-propagation of reading pulse and scattered light, high-power activation pulses will induce various nonlinear effects in an FSBS sensing system. Using the reported method based on activation-reading time-domain separation, the influences of nonlinear effects due to activation pulses can be effectively avoided. However, the nonlinear effects of reading pulses directly affect the sensing performance. Based on this consideration, we study the influences of nonlinear effects on FSBS sensing and their physical mechanisms under different values of peak power of reading pulses; the variation process of the 1st- and 2nd-order FSBS spectrums along ~4.7 km standard single-mode fiber are revealed in detail. Finally, the optimal region is found, in which a perfect FSBS local spectrum is obtained, and the sensing distance can be extended.
      通信作者: 贾新鸿, jiaxh_0@126.com
    • 基金项目: 四川省科技计划(批准号: 2019YJ0530)、四川师范大学大学生创新创业训练计划(批准号: X202110636178) 和国家自然科学基金(批准号: 61205079)资助的课题.
      Corresponding author: Jia Xin-Hong, jiaxh_0@126.com
    • Funds: Project supported by the Science and Technology Program of Sichuan Province, China (Grant No. 2019YJ0530), the Innovative Training Program for College Student of Sichuan Normal University, China (Grant No. X202110636178), and the National Natural Science Foundation of China (Grant No. 61205079).
    [1]

    王士鹤, 任立勇, 刘宇 2009 物理学报 58 3943Google Scholar

    Wang S H, Ren L Y, Liu Y 2009 Acta Phys. Sin. 58 3943Google Scholar

    [2]

    Zhang Y C, Chen W, Sun S L, Meng Z 2015 Chin. Phys. B 24 094209Google Scholar

    [3]

    Mu K L, Shang J M, Tang L H, Wang Z K, Yu S, Qiao Y J 2019 Chin. Phys. B 28 094216Google Scholar

    [4]

    Wang G, Xu L X, Gu C 2018 Chin. Phys. Lett. 35 084201Google Scholar

    [5]

    Shelby R M, Levenson M D, Bayer P W 1985 Phys. Rev. B 31 5244Google Scholar

    [6]

    Townsend P D, Poustie A J, Hardman P J, Blow K J 1996 Opt. Lett. 21 333Google Scholar

    [7]

    Biryukov A S, Sukharev M E, Dianov E M 2002 Quantum Electron. 32 765Google Scholar

    [8]

    Quang D L, Jaouën Y, Zimmerli M, Gallion P, Thomine J B 1996 IEEE Photonics Technol. Lett. 8 414Google Scholar

    [9]

    Shiraki K, Ohashi M 1992 IEEE Photonics Technol. Lett. 4 1177Google Scholar

    [10]

    Hua Z J, Ba D X, Zhou D W, Li Y J, Wang Y, Bao X Y, Dong Y K 2021 Light: Adv. Manuf. 2 373

    [11]

    Ohashi M, Shibata N, Shiraki K 1992 Electron. Lett. 28 900Google Scholar

    [12]

    Tanaka Y, Ogusu K 1998 IEEE Photonics Technol. Lett. 10 1769Google Scholar

    [13]

    Carry E, Beugnot J C, Stiller B, Lee M W, Maillotte H, Sylvestre T 2011 Appl. Opt. 50 6543Google Scholar

    [14]

    Hayashi N, Suzuki K, Set S Y, Yamashita S 2017 Appl. Phys. Express 10 092501Google Scholar

    [15]

    Tanaka Y, Ogusu K 1999 IEEE Photonics Technol. Lett. 11 865Google Scholar

    [16]

    Lin J B, Jia X H, Xu S R, Ma H L, Wu H, Wei X Y 2019 Appl. Phys. Express 12 102014Google Scholar

    [17]

    Antman Y, Clain A, London Y, Zadok A 2016 Optica 3 510Google Scholar

    [18]

    Chow D M, Soto M A, Thévenaz L 2017 Proc. SPIE 10323 1032311Google Scholar

    [19]

    Hayashi N, Mizuno Y, Nakamura K, Set S Y, Yamashita S 2017 Opt. Express 25 2239Google Scholar

    [20]

    Chow D M, Thévenaz L 2018 Opt. Lett. 43 5467Google Scholar

    [21]

    Zheng Z, Li Z, Fu X, Wang L, Wang H 2020 Opt. Lett. 45 4523Google Scholar

    [22]

    Bashan G, Diamandi H H, London Y, Sharma K, Keren Shemer K, Zehavi E, Zadok A 2021 Light:Sci. Appl. 10 119Google Scholar

    [23]

    Bashan G, Diamandi H H, London Y, Preter E, Zadok A 2018 Nat. Commun. 9 2991Google Scholar

    [24]

    Diamandi H H, London Y, Bashan G, Zadok A 2019 APL Photonics 4 016105Google Scholar

    [25]

    Chow D M, Yang Z, Soto M A, Thévenaz L 2018 Nat. Commun. 9 2990Google Scholar

    [26]

    Zaslawski S, Yang Z, Wang S, Thévenaz L 2019 Proc. SPIE 11199 1119923Google Scholar

    [27]

    Pang C, Hua Z, Zhou D, Zhang H, Chen L, Bao X Y, Dong Y K 2020 Optica 7 176Google Scholar

    [28]

    Zaslawski S, Yang Z, Thévenaz L 2021 Optica 8 388Google Scholar

    [29]

    Ba D X, Hua Z J, Li Y J, Dong Y K 2021 Opt. Lett. 46 5886Google Scholar

    [30]

    Yang Y L, Lin J B, Liu L M, Jia X H, Liang W Y, Xu S R, Jiang L 2021 Chin. Phys. B 30 084205Google Scholar

    [31]

    Agrawal G P 2013 Nonlinear Fiber Optics (5th Ed.) (Oxford/Waltham: Academic Press)

    [32]

    Alem M, Soto M A, Thévenaz L 2015 Opt. Express 23 29514Google Scholar

  • 图 1  OMTDA实验原理图[10,27]

    Fig. 1.  Schematic diagram of OMTDA[10,27].

    图 2  OMTDA实验装置. Coupler, 耦合器; DFB-LD, 分布式反馈激光器; EOM, 电光调制器; MWS, 微波源; DC, 直流电压; PC, 偏振控制器; PS, 偏振扰偏器; EDFA, 掺铒光纤放大器; CIR, 环形器; TBPF, 可调谐带通滤波器; AWG, 任意波形发生器; BPF, 带通滤波器; VOA, 可变光衰减器; FUT, 待测光纤; PD, 光电探测器; OSC, 示波器; DAQ, 数据采集卡

    Fig. 2.  Experimental setup of OMTDA. DFB-LD, distributed feedback laser diode; EOM, electro-optic modulator; MWS, micro-wave source; DC, direct current; PC, polarization controller; PS, polarization scrambler; EDFA, erbium-doped fiber amplifier; CIR, circulator; TBPF, tunable bandpass filter; AWG, arbitrary waveform generator; BPF, bandpass filter; VOA, variable optical attenuator; FUT, fiber under test; PD, photodetector; OSC, oscilloscope; DAQ, data acquisition card.

    图 3  激活脉冲的(a)低频和(b)高频分量归一化功率分布

    Fig. 3.  Power distribution of (a) low frequency and (b) high frequency components of activation pulses.

    图 4  读取脉冲峰值功率为1.38 W时, FSBS的(a)低频和(b)高频归一化功率分布, (c)差分后二维(2D)增益谱以及(d)低频最高峰与高频最低峰对应的归一化功率分布

    Fig. 4.  (a) Low-frequency, (b) high-frequency normalized power distribution, (c) post-processing 2D gain spectrum, and (d) normalized power distribution for the highest peak of low-frequency and lowest peak of high-frequency when the peak power of the reading pulse is 1.38 W.

    图 7  读取脉冲峰值功率为0.16 W时, FSBS的(a)低频和(b)高频归一化功率分布, (c)差分后2D增益谱以及(d)低频最高峰与高频最低峰对应的归一化功率分布

    Fig. 7.  (a) Low-frequency, (b) high-frequency normalized power distribution, (c) post-processing 2D gain spectrum, and (d) normalized power distribution for the highest peak of low-frequency and lowest peak of high-frequency when the peak power of the reading pulse is 0.16 W.

    图 5  读取脉冲峰值功率为0.69 W时, FSBS的(a)低频和(b)高频归一化功率分布, (c)差分后2D增益谱以及(d)低频最高峰与高频最低峰对应的归一化功率分布

    Fig. 5.  (a) Low-frequency, (b) high-frequency normalized power distribution, (c) post-processing 2D gain spectrum, and (d) normalized power distribution for the highest peak of low-frequency and lowest peak of high-frequency when the peak power of the reading pulse is 0.69 W.

    图 6  读取脉冲峰值功率为0.36 W时, FSBS的(a)低频和(b)高频归一化功率分布, (c)差分后2D增益谱以及(d)低频最高峰与高频最低峰对应的归一化功率分布

    Fig. 6.  (a) Low-frequency, (b) high-frequency normalized power distribution, (c) post-processing 2D gain spectrum, and (d) normalized power distribution for the highest peak of low-frequency and lowest peak of high-frequency when the peak power of the reading pulse is 0.36 W.

    图 9  读取脉冲峰值功率为0.69 W时, 二阶FSBS边带的(a)低频与(b)高频分量归一化功率分布

    Fig. 9.  Normalized power distribution of (a) low frequency and (b) high frequency components of 2nd-order FSBS sidebands when the peak power of the reading pulse is 0.69 W.

    图 10  读取脉冲峰值功率为0.36 W时, 二阶FSBS边带的(a)低频与(b)高频分量归一化功率分布

    Fig. 10.  Normalized power distribution of (a) low frequency and (b) high frequency components of 2nd-order FSBS sidebands when the peak power of the reading pulse is 0.36 W.

    图 8  读取脉冲峰值功率为1.38 W时, 二阶FSBS边带的(a)低频与(b)高频分量归一化功率分布

    Fig. 8.  Normalized power distribution of (a) low frequency and (b) high frequency components of 2nd-order FSBS sidebands when the peak power of the reading pulse is 1.38 W.

    图 11  读取脉冲峰值功率为0.16 W时, 二阶FSBS边带的(a)低频与(b)高频分量归一化功率分布

    Fig. 11.  Normalized power distribution of (a) low frequency and (b) high frequency components of 2nd-order FSBS sidebands when the peak power of the reading pulse is 0.16 W.

  • [1]

    王士鹤, 任立勇, 刘宇 2009 物理学报 58 3943Google Scholar

    Wang S H, Ren L Y, Liu Y 2009 Acta Phys. Sin. 58 3943Google Scholar

    [2]

    Zhang Y C, Chen W, Sun S L, Meng Z 2015 Chin. Phys. B 24 094209Google Scholar

    [3]

    Mu K L, Shang J M, Tang L H, Wang Z K, Yu S, Qiao Y J 2019 Chin. Phys. B 28 094216Google Scholar

    [4]

    Wang G, Xu L X, Gu C 2018 Chin. Phys. Lett. 35 084201Google Scholar

    [5]

    Shelby R M, Levenson M D, Bayer P W 1985 Phys. Rev. B 31 5244Google Scholar

    [6]

    Townsend P D, Poustie A J, Hardman P J, Blow K J 1996 Opt. Lett. 21 333Google Scholar

    [7]

    Biryukov A S, Sukharev M E, Dianov E M 2002 Quantum Electron. 32 765Google Scholar

    [8]

    Quang D L, Jaouën Y, Zimmerli M, Gallion P, Thomine J B 1996 IEEE Photonics Technol. Lett. 8 414Google Scholar

    [9]

    Shiraki K, Ohashi M 1992 IEEE Photonics Technol. Lett. 4 1177Google Scholar

    [10]

    Hua Z J, Ba D X, Zhou D W, Li Y J, Wang Y, Bao X Y, Dong Y K 2021 Light: Adv. Manuf. 2 373

    [11]

    Ohashi M, Shibata N, Shiraki K 1992 Electron. Lett. 28 900Google Scholar

    [12]

    Tanaka Y, Ogusu K 1998 IEEE Photonics Technol. Lett. 10 1769Google Scholar

    [13]

    Carry E, Beugnot J C, Stiller B, Lee M W, Maillotte H, Sylvestre T 2011 Appl. Opt. 50 6543Google Scholar

    [14]

    Hayashi N, Suzuki K, Set S Y, Yamashita S 2017 Appl. Phys. Express 10 092501Google Scholar

    [15]

    Tanaka Y, Ogusu K 1999 IEEE Photonics Technol. Lett. 11 865Google Scholar

    [16]

    Lin J B, Jia X H, Xu S R, Ma H L, Wu H, Wei X Y 2019 Appl. Phys. Express 12 102014Google Scholar

    [17]

    Antman Y, Clain A, London Y, Zadok A 2016 Optica 3 510Google Scholar

    [18]

    Chow D M, Soto M A, Thévenaz L 2017 Proc. SPIE 10323 1032311Google Scholar

    [19]

    Hayashi N, Mizuno Y, Nakamura K, Set S Y, Yamashita S 2017 Opt. Express 25 2239Google Scholar

    [20]

    Chow D M, Thévenaz L 2018 Opt. Lett. 43 5467Google Scholar

    [21]

    Zheng Z, Li Z, Fu X, Wang L, Wang H 2020 Opt. Lett. 45 4523Google Scholar

    [22]

    Bashan G, Diamandi H H, London Y, Sharma K, Keren Shemer K, Zehavi E, Zadok A 2021 Light:Sci. Appl. 10 119Google Scholar

    [23]

    Bashan G, Diamandi H H, London Y, Preter E, Zadok A 2018 Nat. Commun. 9 2991Google Scholar

    [24]

    Diamandi H H, London Y, Bashan G, Zadok A 2019 APL Photonics 4 016105Google Scholar

    [25]

    Chow D M, Yang Z, Soto M A, Thévenaz L 2018 Nat. Commun. 9 2990Google Scholar

    [26]

    Zaslawski S, Yang Z, Wang S, Thévenaz L 2019 Proc. SPIE 11199 1119923Google Scholar

    [27]

    Pang C, Hua Z, Zhou D, Zhang H, Chen L, Bao X Y, Dong Y K 2020 Optica 7 176Google Scholar

    [28]

    Zaslawski S, Yang Z, Thévenaz L 2021 Optica 8 388Google Scholar

    [29]

    Ba D X, Hua Z J, Li Y J, Dong Y K 2021 Opt. Lett. 46 5886Google Scholar

    [30]

    Yang Y L, Lin J B, Liu L M, Jia X H, Liang W Y, Xu S R, Jiang L 2021 Chin. Phys. B 30 084205Google Scholar

    [31]

    Agrawal G P 2013 Nonlinear Fiber Optics (5th Ed.) (Oxford/Waltham: Academic Press)

    [32]

    Alem M, Soto M A, Thévenaz L 2015 Opt. Express 23 29514Google Scholar

  • [1] 冯玉祥, 汪雨辰, 童家欢, 吕立冬. 基于动态标定的拉曼分布式光纤测温系统研究. 物理学报, 2025, 74(7): . doi: 10.7498/aps.74.20241652
    [2] 冯云龙, 侯尚林, 雷景丽, 武刚, 晏祖勇. 声波导单模光纤中后向受激布里渊散射的声模分析. 物理学报, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [3] 孙苗, 杨爽, 汤玉泉, 赵晓虎, 张志荣, 庄飞宇. 基于拉曼散射光动态校准的分布式光纤温度传感系统. 物理学报, 2022, 71(20): 200701. doi: 10.7498/aps.71.20220611
    [4] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性. 物理学报, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [5] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [6] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 更正:分立式与分布式光纤传感关键技术研究进展[物理学报2017,66(7):070705]. 物理学报, 2017, 66(9): 099901. doi: 10.7498/aps.66.099901
    [7] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [8] 陈文杰, 江俊峰, 刘琨, 王双, 马喆, 张晚琛, 刘铁根. 基于相干光时域反射型的光纤分布式声增敏传感研究. 物理学报, 2017, 66(7): 070706. doi: 10.7498/aps.66.070706
    [9] 饶云江. 长距离分布式光纤传感技术研究进展. 物理学报, 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [10] 裴丽, 吴良英, 王建帅, 李晶, 宁提纲. 啁啾相移光纤光栅分布式应变与应变点精确定位传感研究. 物理学报, 2017, 66(7): 070702. doi: 10.7498/aps.66.070702
    [11] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展. 物理学报, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [12] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [13] 王杰, 贾新鸿, 饶云江, 吴慧娟. 基于双向拉曼放大的相位敏感光时域反射仪. 物理学报, 2013, 62(4): 044212. doi: 10.7498/aps.62.044212
    [14] 马成举, 任立勇, 唐峰, 屈恩世, 徐金涛, 梁权, 王舰, 韩旭. 基于分布式光纤Bragg光栅传感技术的光缆卷盘静态压力研究. 物理学报, 2012, 61(5): 054702. doi: 10.7498/aps.61.054702
    [15] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [16] 张超, 饶云江, 贾新鸿, 邓坤, 苌亮, 冉曾令. 光脉冲编码对基于拉曼放大的布里渊光时域分析系统的影响. 物理学报, 2011, 60(10): 104211. doi: 10.7498/aps.60.104211
    [17] 张超, 饶云江, 贾新鸿, 苌亮, 冉曾令. 基于双向拉曼放大的布里渊光时域分析系统. 物理学报, 2010, 59(8): 5523-5527. doi: 10.7498/aps.59.5523
    [18] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [19] 孙琪真, 刘德明, 王 健. 基于环结构的新型分布式光纤振动传感系统. 物理学报, 2007, 56(10): 5903-5908. doi: 10.7498/aps.56.5903
    [20] 周晓军, 杜 东, 龚俊杰. 偏振模耦合分布式光纤传感器空间分辨率研究. 物理学报, 2005, 54(5): 2106-2110. doi: 10.7498/aps.54.2106
计量
  • 文章访问数:  4821
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-04-02
  • 上网日期:  2022-07-22
  • 刊出日期:  2022-08-05

/

返回文章
返回