搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相干光时域反射型的光纤分布式声增敏传感研究

陈文杰 江俊峰 刘琨 王双 马喆 张晚琛 刘铁根

引用本文:
Citation:

基于相干光时域反射型的光纤分布式声增敏传感研究

陈文杰, 江俊峰, 刘琨, 王双, 马喆, 张晚琛, 刘铁根

Research on improving detection sensitivity to acoustic based on coherent-OTDR distributed fiber-sensing system

Chen Wen-Jie, Jiang Jun-Feng, Liu Kun, Wang Shuang, Ma Zhe, Zhang Wan-Chen, Liu Tie-Gen
PDF
导出引用
  • 开展了基于相干光时域反射型的光纤分布式声增敏传感研究,提出了单端固定开口波纹薄筒光纤声增敏方法,建立了光纤声增敏装置波节间距、单波节轴向刚度、光纤长度等参数对光纤相位灵敏度的影响理论模型.制作了3种规格的光纤声增敏传感装置进行声传感实验.实验结果表明,声增敏传感装置相位灵敏度达到2.975 rad/Pa,最小声探测信号达到60.1 dB,3种规格的声增敏传感装置的灵敏度测试值与理论分析基本一致.研究结果为高灵敏度的光纤分布式声传感的进一步发展提供了理论和实验基础.
    Coherent-OTDR technology is one of acoustic distributed fiber-sensing systems. Because of the advantages of anti-electric magnetic field interference, anti-corrosion and flexibility, it has been attracting more and more interest. Because the sound pressure is weak, the strain generated on the fiber is tiny and the sensitivity of the sensing system is low. Although many research has been made on expanding measuring distance and improving response frequency, the acoustic signals in the experiments are always replaced by PZT's mechanical stretching. In this work, a device for increasing sensitivity for acoustic in the passive acoustic detection system based on coherent optical time domain reflection (C-OTDR) is promoted. A way of improving sensitivity partly based on a thin-walled corrugated tube was promoted. The thin-walled corrugated tube was used as the element to transmit the energy of acoustic into the vibration of fiber. In section 2, a mathematical model of sensing based on corrugated tube was established. Theoretical result shows that the vibration of fiber is mainly caused by the tube movement along the axis direction. And it also shows the linear relationship between the vibration and the sound pressure. The sensitivity of the improved sensing devices is calculated and a computational formula for sensitivity calculating are also given. In section 3, the C-OTDR acoustic distributed fiber-sensing systems are set up. Fiberring and three types of thin-walled corrugated tubes are used for acoustic sensing. The minimum detection sound pressure level reaches 60.1 dB and the phase sensitivity reaches 2.975 rad/Pa. The experimental phase sensitivity of different sensing devices with different parameters change similarly to the theory results. The experimental results show that the way of improving sensitivity and the mechanical model for calculating sensitivity are effective. This research provides theoretical and experimental basis for further development of distributed optical fiber sensing.
      通信作者: 江俊峰, jiangjfjxu@tju.edu.cn;tgliu@tju.edu.cn ; 刘铁根, jiangjfjxu@tju.edu.cn;tgliu@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61675152,61227011,61378043,61475114,61505139,61505138)、国家重大科学仪器设备开发专项(批准号:2013YQ030915)和深圳科技研究计划(批准号:JCYJ20120831153904083)资助的课题.
      Corresponding author: Jiang Jun-Feng, jiangjfjxu@tju.edu.cn;tgliu@tju.edu.cn ; Liu Tie-Gen, jiangjfjxu@tju.edu.cn;tgliu@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675152, 61227011, 61378043, 61475114, 61505139, 61505138), the National Instrumentation Program of China (Grant No. 2013YQ030915), and the Shenzhen Science and Technology Research Project, China (Grant No. JCYJ20120831153904083).
    [1]

    Teixeira J G V, Leite I T, Silva S, Frazo O 2014 Photon. Sens. 4 198

    [2]

    Wild G, Hinckley S 2008 IEEE Sens. J. 8 1184

    [3]

    Takahashi N, Hirose A, Takahashi S 1997 Opt. Rev. 4 691

    [4]

    Wang S, Lu P, Liao H, Zhang L, Liu D, Zhang J 2013 J. Mod. Opt. 60 1892

    [5]

    Sakai T, Suzuki S, Wakayama S 2016 Exp. Mech. 56 1439

    [6]

    Moccia M, Pisco M, Cutolo A, Galdi V, Bevilacqua P, Cusano A 2011 Opt. Express 19 18842

    [7]

    Guo F, Fink T, Han M, Koester L, Turner J, Huang J 2012 Opt. Lett. 37 1505

    [8]

    Wei P, Shan X, Sun X 2013 Opt. Fiber Technol. 19 47

    [9]

    He H, Shao L, Li Z, Zhang Z, Zou X, Luo B, Pan W, Yan L 2016 Sensors-Basel 16 681

    [10]

    Hussels M T, Chruscicki S, Habib A, Krebber K 2016 In Sixth European Workshop on Optical Fibre Sensors (EWOFS') Limerick, Ireland, May 30, 2016 p99162Y

    [11]

    Palmieri L, Schenato L 2013 The Open Opt. J. 7 104

    [12]

    Lu Y, Zhu T, Chen L, Bao X 2010 J. Lightwave Technol. 28 3243

    [13]

    Wu Y, Gan J, Li Q, Zhang Z 2015 IEEE Photonics J. 7 1

    [14]

    Shang Y, Yang Y, Wang C, Liu X, Wang C, Peng G 2016 Measurement 79 222

    [15]

    Wang D H, Jia P G, Ma Z G, Xie L F, Liang Q B 2014 Electron. Lett. 50 649

    [16]

    Wang C, Shang Y, Liu X, Wang C, Peng G D 2014 Asia Communications and Photonics Conference Shanghai, China, November 11-14, 2014 pATh3A-213

    [17]

    Iida D, Toge K, Manabe T 2016 Optical Fiber Communications Conference and Exhibition Anaheim, California United States, March 20-22, 2016 pM2D-6

    [18]

    Luo W 2006 M. S. Dissertation (Qinhuangdao:Yanshan University) (in Chinese)[骆伟2006硕士学位论文(秦皇岛:燕山大学)

    [19]

    L D C, Zhang X P 2010 Acta Opt. Sin. 25 1025 (in Chinese)[吕丁成, 张晓萍2010光学学报25 1025]

    [20]

    Zhao L J 2010 Acta Phys. Sin. 59 6219 (in Chinese)[赵丽娟2010物理学报59 6219]

  • [1]

    Teixeira J G V, Leite I T, Silva S, Frazo O 2014 Photon. Sens. 4 198

    [2]

    Wild G, Hinckley S 2008 IEEE Sens. J. 8 1184

    [3]

    Takahashi N, Hirose A, Takahashi S 1997 Opt. Rev. 4 691

    [4]

    Wang S, Lu P, Liao H, Zhang L, Liu D, Zhang J 2013 J. Mod. Opt. 60 1892

    [5]

    Sakai T, Suzuki S, Wakayama S 2016 Exp. Mech. 56 1439

    [6]

    Moccia M, Pisco M, Cutolo A, Galdi V, Bevilacqua P, Cusano A 2011 Opt. Express 19 18842

    [7]

    Guo F, Fink T, Han M, Koester L, Turner J, Huang J 2012 Opt. Lett. 37 1505

    [8]

    Wei P, Shan X, Sun X 2013 Opt. Fiber Technol. 19 47

    [9]

    He H, Shao L, Li Z, Zhang Z, Zou X, Luo B, Pan W, Yan L 2016 Sensors-Basel 16 681

    [10]

    Hussels M T, Chruscicki S, Habib A, Krebber K 2016 In Sixth European Workshop on Optical Fibre Sensors (EWOFS') Limerick, Ireland, May 30, 2016 p99162Y

    [11]

    Palmieri L, Schenato L 2013 The Open Opt. J. 7 104

    [12]

    Lu Y, Zhu T, Chen L, Bao X 2010 J. Lightwave Technol. 28 3243

    [13]

    Wu Y, Gan J, Li Q, Zhang Z 2015 IEEE Photonics J. 7 1

    [14]

    Shang Y, Yang Y, Wang C, Liu X, Wang C, Peng G 2016 Measurement 79 222

    [15]

    Wang D H, Jia P G, Ma Z G, Xie L F, Liang Q B 2014 Electron. Lett. 50 649

    [16]

    Wang C, Shang Y, Liu X, Wang C, Peng G D 2014 Asia Communications and Photonics Conference Shanghai, China, November 11-14, 2014 pATh3A-213

    [17]

    Iida D, Toge K, Manabe T 2016 Optical Fiber Communications Conference and Exhibition Anaheim, California United States, March 20-22, 2016 pM2D-6

    [18]

    Luo W 2006 M. S. Dissertation (Qinhuangdao:Yanshan University) (in Chinese)[骆伟2006硕士学位论文(秦皇岛:燕山大学)

    [19]

    L D C, Zhang X P 2010 Acta Opt. Sin. 25 1025 (in Chinese)[吕丁成, 张晓萍2010光学学报25 1025]

    [20]

    Zhao L J 2010 Acta Phys. Sin. 59 6219 (in Chinese)[赵丽娟2010物理学报59 6219]

  • [1] 井建迎, 刘琨, 吴张羿, 刘玥萌, 江俊峰, 徐天华, 晏伟铖, 熊艺扬, 战晓寒, 肖璐, 刘津畅, 刘铁根. 基于紫磷增敏的即插即用式双通道光纤表面等离激元共振折射率计. 物理学报, 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
    [2] 刘浪, 王一平. 基于可调频光力晶格中声子-光子拓扑性质的模拟和探测. 物理学报, 2022, 71(22): 224202. doi: 10.7498/aps.71.20221286
    [3] 艾则孜姑丽·阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充. 大气湍流对接收光场时间相干特性的影响. 物理学报, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202
    [4] 谢实梦, 黄林, 王雪, 迟子惠, 汤永辉, 郑铸, 蒋华北. 基于镂空阵列探头的反射式光声/热声双模态组织成像. 物理学报, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
    [5] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏. 面向SF6气体绝缘设备故障检测的光声CO气体传感器设计和优化. 物理学报, 2021, 70(17): 170701. doi: 10.7498/aps.70.20210532
    [6] 冯秋菊, 石博, 李昀铮, 王德煜, 高冲, 董增杰, 解金珠, 梁红伟. 单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能. 物理学报, 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [7] 孟凡, 张云佐, 冯魏巍, 吴鹏飞, 邹戈胤. 多模光纤中基于压缩传感的光谱探测. 物理学报, 2020, 69(13): 134204. doi: 10.7498/aps.69.20200014
    [8] 赵博硕, 强晓永, 秦岳, 胡明. 氧化钨纳米线气敏传感器的制备及其室温NO2敏感特性. 物理学报, 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [9] 张旭苹, 张益昕, 王峰, 单媛媛, 孙振鉷, 胡燕祝. 相位敏感型光时域反射传感系统光学背景噪声的产生机理及其抑制方法. 物理学报, 2017, 66(7): 070707. doi: 10.7498/aps.66.070707
    [10] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [11] 刘瑞霞, 张明江, 张建忠, 刘毅, 靳宝全, 白清, 李哲哲. 一种利用布里渊增益谱边带解调提高布里渊光时域反射系统测温精度的方法. 物理学报, 2016, 65(24): 244203. doi: 10.7498/aps.65.244203
    [12] 王一鸣, 胡陈晨, 刘泉, 郭会勇, 殷广林, 李政颖. 基于连续扫频光时域反射的全同弱光栅高速解调方法. 物理学报, 2016, 65(20): 204209. doi: 10.7498/aps.65.204209
    [13] 任秀云, 田兆硕, 杨敏, 孙兰君, 付石友. 相干瑞利散射海水水下温度测量技术的理论研究. 物理学报, 2014, 63(8): 083302. doi: 10.7498/aps.63.083302
    [14] 张郑兵, 马小柏, 金钻明, 马国宏, 杨金波. Fe/Si薄膜中相干声学声子的光激发研究. 物理学报, 2012, 61(9): 097401. doi: 10.7498/aps.61.097401
    [15] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究. 物理学报, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [16] 杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉. 基于时域多普勒修正的运动声全息识别方法. 物理学报, 2010, 59(7): 4738-4747. doi: 10.7498/aps.59.4738
    [17] 鄢秋荣, 赵宝升, 杨颢, 刘永安, 朱香平, 李梅. 一维游标位敏阳极光子计数探测器. 物理学报, 2010, 59(9): 6164-6171. doi: 10.7498/aps.59.6164
    [18] 杨若夫, 杨平, 沈锋. 基于能动分块反射镜的两路光纤放大器相位探测及其相干合成实验研究. 物理学报, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [19] 马瑞琼, 李永放, 时 坚. 量子态的非相干光时域测量. 物理学报, 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [20] 杨庆怡, 孙敬文, 韦联福, 丁良恩. 增、减光子奇偶相干态的Wigner函数. 物理学报, 2005, 54(6): 2704-2709. doi: 10.7498/aps.54.2704
计量
  • 文章访问数:  5399
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-17
  • 修回日期:  2017-02-23
  • 刊出日期:  2017-04-05

/

返回文章
返回