搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干瑞利散射海水水下温度测量技术的理论研究

任秀云 田兆硕 杨敏 孙兰君 付石友

引用本文:
Citation:

相干瑞利散射海水水下温度测量技术的理论研究

任秀云, 田兆硕, 杨敏, 孙兰君, 付石友

Theoretical study on measuring underwater temperature based on coherent Rayleigh scattering

Ren Xiu-Yun, Tian Zhao-Shuo, Yang Min, Sun Lan-Jun, Fu Shi-You
PDF
导出引用
  • 海水水下温度的快速大范围测量是海洋监测的重要内容,在民用和军事领域都有着至关重要的意义. 本文提出了采用相干瑞利散射方法测量海水水下温度的新方法:用宽带高速光电探测器接收本振激光和海水后向瑞利散射光相干产生的差频信号,进行傅里叶变换分析获取海水瑞利散射展宽谱,从而反演海水温度. 首先从海水的热力学特性出发,对利用瑞利散射谱测量海水水下温度的基本原理进行了理论研究和软件模拟;然后对采用相干探测测量海水瑞利散射谱的测量方法进行了理论分析和软件模拟;在此基础上对瑞利散射海水水下温度测量精度进行了分析,得出当水体瑞利散射频谱半宽度测量精度为1 MHz时,测温精度约为0.35 K.
    The rapid measuring of the underwater temperature on a large scale is very important for marine monitoring, and it has vital significances in the civilian and military fields. In this paper, a new coherent Rayleigh scattering method to measure underwater temperature is presented. A wide-band photodetector is used to receive the heterodyne signal combined by the local oscillator laser and water Rayleigh backscattering light, and the water Rayleigh scattering spectrum can be acquired by transform analysis, then the water temperature can be obtained. Firstly, theoretical study and simulation are made on the basic principles of measuring underwater temperature based on Rayleigh scattering. Secondly, theoretical analysis and simulation are made on how to measure water Rayleigh scattering spectrum using coherent detection. Finally, the water temperature measurement accuracy based on Rayleigh scattering is analyzed, showing that for 1 MHz measurement accuracy of Rayleigh scattering spectrum half-width, about 0.35 K temperature measurement accuracy can be achieved.
    • 基金项目: 国家自然科学基金(批准号:41306092)、山东省自然科学基金(批准号:ZR2013DQ026)、山东省科技攻关(批准号:2011GHY11514)和中央高校基本科研业务费(批准号:HIT.NSRIF.2013139)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41306092), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013DQ026), the Science and Technology Planning of Shandong Province, China (Grant No. 2011GHY11514), and the Fundamental Research Fund for the Central Universities, China (Grant No. HIT.NSRIF.2013139).
    [1]

    Leonard D A, Caputo B, Hoge F E 1979 Appl. Opt. 18 1732

    [2]

    Becucci M, Cavalieri S, Eramo R, Fini L, Materazzi M 1999 Appl. Opt. 38 928

    [3]

    Hirschberg J G, Byrne J D, Wouters A W, Boynton G C 1984 Appl. Opt. 23 2624

    [4]

    Schorstein K, Fry E S, Walther T 2009 Appl. Phys. B 97 931

    [5]

    Rudolf A, Walther T 2012 Opt. Lett. 37 4477

    [6]

    Gong W, Shi J, Li G, Liu D, Katz J W, Fry E S 2006 Appl. Phys. B 83 319

    [7]

    Shi J, Ouyang M, Gong W, Li S, Liu D 2008 Appl. Phys. B 90 569

    [8]

    Liu J, Bai J H, Ni K, Jing H M, He X D, Liu D H 2008 Acta Phys. Sin. 57 260 (in Chinese) [刘娟, 白建辉, 倪恺, 景红梅, 何兴道, 刘大禾 2008 物理学报 57 260]

    [9]

    Chen X D, Shi J W, Ouyang M, Liu B, Xu Y X, Shi J L, Liu D H 2009 Acta Phys. Sin. 58 4680 (in Chinese) [陈旭东, 石锦卫, 欧阳敏, 刘宝, 许艳霞, 史久林, 刘大禾 2009 物理学报 58 4680]

    [10]

    Chen X D, Shi J W, Liu J, Liu B, Xu Y X, Shi J L, Liu D H 2010 Acta Phys. Sin. 59 1047 (in Chinese) [陈旭东, 石锦卫, 刘娟, 刘宝, 许艳霞, 史久林, 刘大禾 2010 物理学报 59 1047]

    [11]

    Piironen P, Eloranta E W 1994 Opt. Lett. 19 234

    [12]

    Zhu X P, Liu J Q, Chen W B 2010 Chin. J. Lasers 37 2005 (in Chinese) [竹孝鹏, 刘继桥, 陈卫标 2010 中国激光 37 2005]

  • [1]

    Leonard D A, Caputo B, Hoge F E 1979 Appl. Opt. 18 1732

    [2]

    Becucci M, Cavalieri S, Eramo R, Fini L, Materazzi M 1999 Appl. Opt. 38 928

    [3]

    Hirschberg J G, Byrne J D, Wouters A W, Boynton G C 1984 Appl. Opt. 23 2624

    [4]

    Schorstein K, Fry E S, Walther T 2009 Appl. Phys. B 97 931

    [5]

    Rudolf A, Walther T 2012 Opt. Lett. 37 4477

    [6]

    Gong W, Shi J, Li G, Liu D, Katz J W, Fry E S 2006 Appl. Phys. B 83 319

    [7]

    Shi J, Ouyang M, Gong W, Li S, Liu D 2008 Appl. Phys. B 90 569

    [8]

    Liu J, Bai J H, Ni K, Jing H M, He X D, Liu D H 2008 Acta Phys. Sin. 57 260 (in Chinese) [刘娟, 白建辉, 倪恺, 景红梅, 何兴道, 刘大禾 2008 物理学报 57 260]

    [9]

    Chen X D, Shi J W, Ouyang M, Liu B, Xu Y X, Shi J L, Liu D H 2009 Acta Phys. Sin. 58 4680 (in Chinese) [陈旭东, 石锦卫, 欧阳敏, 刘宝, 许艳霞, 史久林, 刘大禾 2009 物理学报 58 4680]

    [10]

    Chen X D, Shi J W, Liu J, Liu B, Xu Y X, Shi J L, Liu D H 2010 Acta Phys. Sin. 59 1047 (in Chinese) [陈旭东, 石锦卫, 刘娟, 刘宝, 许艳霞, 史久林, 刘大禾 2010 物理学报 59 1047]

    [11]

    Piironen P, Eloranta E W 1994 Opt. Lett. 19 234

    [12]

    Zhu X P, Liu J Q, Chen W B 2010 Chin. J. Lasers 37 2005 (in Chinese) [竹孝鹏, 刘继桥, 陈卫标 2010 中国激光 37 2005]

计量
  • 文章访问数:  2393
  • PDF下载量:  718
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-23
  • 修回日期:  2014-01-09
  • 刊出日期:  2014-04-05

相干瑞利散射海水水下温度测量技术的理论研究

  • 1. 哈尔滨工业大学 (威海) 信息光电子研究所, 威海 264209;
  • 2. 国家海洋局北海海洋技术保障中心, 青岛 266033
    基金项目: 

    国家自然科学基金(批准号:41306092)、山东省自然科学基金(批准号:ZR2013DQ026)、山东省科技攻关(批准号:2011GHY11514)和中央高校基本科研业务费(批准号:HIT.NSRIF.2013139)资助的课题.

摘要: 海水水下温度的快速大范围测量是海洋监测的重要内容,在民用和军事领域都有着至关重要的意义. 本文提出了采用相干瑞利散射方法测量海水水下温度的新方法:用宽带高速光电探测器接收本振激光和海水后向瑞利散射光相干产生的差频信号,进行傅里叶变换分析获取海水瑞利散射展宽谱,从而反演海水温度. 首先从海水的热力学特性出发,对利用瑞利散射谱测量海水水下温度的基本原理进行了理论研究和软件模拟;然后对采用相干探测测量海水瑞利散射谱的测量方法进行了理论分析和软件模拟;在此基础上对瑞利散射海水水下温度测量精度进行了分析,得出当水体瑞利散射频谱半宽度测量精度为1 MHz时,测温精度约为0.35 K.

English Abstract

参考文献 (12)

目录

    /

    返回文章
    返回