搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拉曼散射光动态校准的分布式光纤温度传感系统

孙苗 杨爽 汤玉泉 赵晓虎 张志荣 庄飞宇

引用本文:
Citation:

基于拉曼散射光动态校准的分布式光纤温度传感系统

孙苗, 杨爽, 汤玉泉, 赵晓虎, 张志荣, 庄飞宇

Distributed fiber optic temperature sensor based on dynamic calibration of Raman Stokes backscattering light intensity

Sun Miao, Yang Shuang, Tang Yu-Quan, Zhao Xiao-Hu, Zhang Zhi-Rong, Zhuang Fei-Yu
PDF
HTML
导出引用
  • 分布式光纤温度传感(distributed temperature sensor, DTS)系统进行温度测量时, 参考光斯托克斯光强度随着温度的升高而增大, 使信号光反斯托克斯光与参考光斯托克斯光强度的比值减小, 测量温度小于真实温度, 降低系统的测温准确度. 本文提出并实验验证了一种新的动态校准法修正斯托克斯光信号, 可有效减小斯托克斯光导致的测温误差, 提高系统的测温准确度. 该方法根据参考光纤中的实时斯托克斯光强分布, 模拟出对应的整条光纤在参考温度环境中的斯托克斯光强度曲线, 实现斯托克斯光的温度响应修正. 实验结果表明, 与传统温度解调方法相比, 分布式光纤温度传感系统进行斯托克斯光动态校准后测温准确度最高提升4.3 ℃. 与瑞利噪声抑制法联用后, 测温准确度提高8.9 ℃. 本研究为DTS系统进行高温环境温度监测提供了一种新的解决方案.
    In a distributed fiber optic temperature sensing system, the intensity of Raman Stokes backscattering light serving as reference light increases with the increase of temperature, leading to measurement errors in the system. A novel method of dynamically calibrating Raman Stokes backscattering light intensity is proposed to improve temperature accuracy for distributed fiber optic temperature sensors. According to the real-time Stokes intensity distribution in the reference fiber, Stokes intensity curve of the whole fiber at a reference temperature is simulated, and the temperature response of Stokes light is corrected. The ratio of Raman anti-Stokes light intensity to the calculated Stokes light intensity is used to demodulate temperature along the fiber. The experimental results indicate that the temperature accuracy of the distributed optical fiber temperature sensor system after making the Stokes optical dynamic calibration is increased up to 4.3 ℃ compared with that from the conventional method. And the accuracy of temperature measurement is improved by 8.9 ℃ when combined with Rayleigh noise suppression method. This study provides a new solution for a distributed fiber optic temperature sensor system to monitor high temperature environment temperature.
      通信作者: 汤玉泉, laserway@aiofm.ac.cn
    • 基金项目: 安徽省高校自然科学研究重点项目(批准号: KJ2019A0722, KJ2021A0909)、光电探测科学与技术安徽高校联合重点实验室项目(批准号: 2019GDTCZD01)、电子信息系统仿真设计安徽省重点实验室重点项目(批准号: 2020ZDSYSZD03)、安徽省大学生创新创业训练项目(批准号: 14098086)和中国科学院合肥物质科学研究院院长基金青年“火花”项目(批准号: YZJJ2020QN3, YZJJ2022QN02) 资助的课题.
      Corresponding author: Tang Yu-Quan, laserway@aiofm.ac.cn
    • Funds: Project supported by the Key Projects of Natural Science Research in Colleges and Universities of Anhui Province, China (Grant Nos. KJ2019A0722, KJ2021A0909), the Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, China (Grant No. 2019GDTCZD01), the Key Projects of Anhui Province Key Laboratory of Simulation and Design for Electronic Information System (Hefei Normal University), China (Grant No. 2020ZDSYSZD03), the Innovation and Entrepreneurship Training Program for Anhui College Students, China (Grant No. 14098086), and the Dean’s Fund Project of Hefei Research Institute, Chinese Academy of Sciences (Grant Nos. YZJJ2020QN3, YZJJ2022QN02).
    [1]

    Ren L, Jiang T, Jia Z G, Li D S, Yuan C L, Li H N 2018 Measurement 122 57Google Scholar

    [2]

    Francesca D D, Girard S, Planes I, et al. 2017 IEEE Trans. Nucl. Sci. 64 54Google Scholar

    [3]

    Liu Y P, Yin J Y, Fan X Z, Wang B W 2019 Appl. Opt. 58 7962Google Scholar

    [4]

    Yan B Q, Li J, Zhang M J, Zhang J Z, Qiao L J, Wang T 2019 Sensors 19 2320Google Scholar

    [5]

    Yilmaz G, Karlik S E 2006 Sensor Actuat A-Phys. 125 148Google Scholar

    [6]

    饶云江 2017 物理学报 66 074207Google Scholar

    Rao Y J 2017 Acta Phys. Sin. 66 074207Google Scholar

    [7]

    刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏 2017 物理学报 66 070705Google Scholar

    Liu T G, Yu Z, Jiang J F, Liu K, Zhang X Z, Ding Z Y, Wang S, Hu H F, Han Q, Zhang H X, Li H Z 2017 Acta Phys. Sin. 66 070705Google Scholar

    [8]

    张明江, 李健, 刘毅, 张建忠, 李云亭, 黄琦, 刘瑞霞, 杨帅军 2017 中国激光 44 0306002Google Scholar

    Zhang M J, Li J, Liu Y, Zhang J Z, Li Y T, Huang Q, Liu R X, Yang S J 2017 Chin. Laser 44 0306002Google Scholar

    [9]

    Wang W J, Chang J, Lv G P, Wang Z L, Liu Z, Luo S, Jiang S, Liu X Z, Liu X H, Liu Y N 2013 Photonic Sens. 3 256Google Scholar

    [10]

    杨睿, 李小彦, 高翔 2015 光子学报 44 1006006Google Scholar

    Yang R, Li X Y, Gao X 2015 Acta Photon. Sin. 44 1006006Google Scholar

    [11]

    Sun B N, Chang J, Lian J, Wang Z L, Lv G P, Liu X Z, Wang W J, Zhou S, Wei W, Jiang S, Liu Y N, Luo S, Lu X H, Liu Z, Zhang S S 2013 Opt. Commun. 306 117Google Scholar

    [12]

    Yan B Q, Li J, Zhang M J, Xu Y, Yu T, Zhang J Z, Qiao L J, Wang T 2020 Appl. Opt. 59 22Google Scholar

    [13]

    Wang Z L, Chang J, Zhang S S, Luo S, Jia C W, Jiang S, Sun B N, Liu Y N, Wei W, Liu X H, Lv G P 2015 Optik 126 270Google Scholar

    [14]

    Wang Z L, Chang J, Zhang S S, Sun B N, Jiang S, Luo S, Jia C W, Liu Y N, Liu X H, Lv G P, Liu X Z 2014 Opt. Quant. Electron. 46 821Google Scholar

    [15]

    Li J, Li Y T, Zhang M J, Liu Y, Zhang J J, Yan B Q, Wang D, Jin B Q 2017 Photonic Sens. 8 103Google Scholar

    [16]

    李云亭, 张明江, 刘毅, 张建忠 2017 光电工程 34 20Google Scholar

    Li Y T, Zhang M J, Liu Y, Zhang J Z 2017 Optoelectron. Eng. 34 20Google Scholar

    [17]

    汤玉泉, 孙苗, 李俊, 杨爽, Brian Culshaw, 董凤忠 2015 光子学报 44 112Google Scholar

    Tang Y Q, Sun M, Li J, Yang S, Brian C, Dong F Z 2015 Acta Photon. Sin. 44 112Google Scholar

    [18]

    Wang Z L, Chang J, Zhang S S, Luo S, Jia C W, Jiang S, Sun B N, Liu Y N, Liu X H, Lv G P 2015 IEEE Sens. J. 15 1061Google Scholar

    [19]

    Suh K, Lee C 2008 Opt. Lett. 33 1845Google Scholar

    [20]

    Wang Z L, Zhang S S, Chang J, Lv G P, Wang W J, Jiang S, Liu X Z, Liu X H, Luo S, Sun B N, Liu Y N 2013 Opt. Quant. Electron. 45 1087Google Scholar

    [21]

    孙苗, 汤玉泉, 杨爽, 李俊, Brian Culshaw, 董凤忠 2015 光电子·激光 26 2070Google Scholar

    Sun M, Tang Y Q, Yang S, Li J, Brain C, Dong F Z 2015 J. Optoelectron. Laser 26 2070Google Scholar

    [22]

    Wang Z, Sun X H, Xue Q, Wang Y L, Qi Y L, Wang X S 2017 Opt. Laser Technol. 93 224Google Scholar

    [23]

    马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬 2020 物理学报 69 030701Google Scholar

    Ma T B, Zi B W, Guo Y C, Ling L Y, Huang Y R, Jia X F 2020 Acta Phys. Sin. 69 030701Google Scholar

    [24]

    Chakraborty A L, Sharma R K, Saxena M K, Kher S 2007 Opt. Commun. 274 396Google Scholar

  • 图 1  DTS系统的实验装置图

    Fig. 1.  The experimental setup of the DTS system.

    图 2  (a) 光纤中的背向散射光分布; (b) 不同温度下归一化的散射光强度图

    Fig. 2.  (a) Backscattered lights distribution along the fiber; (b) variation of normalized Raman signals with temperature.

    图 3  原始的斯托克斯光信号和指数拟合的斯托克斯光信号

    Fig. 3.  Original Stokes signals and exponential fits.

    图 4  不同被测温度对应的测量结果 (a) 温度测量值; (b) 温度测量误差

    Fig. 4.  Demodulated temperature versus different measured temperature: (a) Measured temperature; (b) temperature error.

    图 5  DTS系统的测温结果 (a) 斯托克斯光动态校准前后消除瑞利噪声的测量温度; (b)斯托克斯光校准前后消除瑞利噪声的测温误差

    Fig. 5.  Temperature measurement results in DTS system: (a) Measurement temperature results without Rayleigh noise before and after Stokes light dynamic calibration; (b) temperature error without Rayleigh noise before and after Stokes light dynamic calibration.

  • [1]

    Ren L, Jiang T, Jia Z G, Li D S, Yuan C L, Li H N 2018 Measurement 122 57Google Scholar

    [2]

    Francesca D D, Girard S, Planes I, et al. 2017 IEEE Trans. Nucl. Sci. 64 54Google Scholar

    [3]

    Liu Y P, Yin J Y, Fan X Z, Wang B W 2019 Appl. Opt. 58 7962Google Scholar

    [4]

    Yan B Q, Li J, Zhang M J, Zhang J Z, Qiao L J, Wang T 2019 Sensors 19 2320Google Scholar

    [5]

    Yilmaz G, Karlik S E 2006 Sensor Actuat A-Phys. 125 148Google Scholar

    [6]

    饶云江 2017 物理学报 66 074207Google Scholar

    Rao Y J 2017 Acta Phys. Sin. 66 074207Google Scholar

    [7]

    刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏 2017 物理学报 66 070705Google Scholar

    Liu T G, Yu Z, Jiang J F, Liu K, Zhang X Z, Ding Z Y, Wang S, Hu H F, Han Q, Zhang H X, Li H Z 2017 Acta Phys. Sin. 66 070705Google Scholar

    [8]

    张明江, 李健, 刘毅, 张建忠, 李云亭, 黄琦, 刘瑞霞, 杨帅军 2017 中国激光 44 0306002Google Scholar

    Zhang M J, Li J, Liu Y, Zhang J Z, Li Y T, Huang Q, Liu R X, Yang S J 2017 Chin. Laser 44 0306002Google Scholar

    [9]

    Wang W J, Chang J, Lv G P, Wang Z L, Liu Z, Luo S, Jiang S, Liu X Z, Liu X H, Liu Y N 2013 Photonic Sens. 3 256Google Scholar

    [10]

    杨睿, 李小彦, 高翔 2015 光子学报 44 1006006Google Scholar

    Yang R, Li X Y, Gao X 2015 Acta Photon. Sin. 44 1006006Google Scholar

    [11]

    Sun B N, Chang J, Lian J, Wang Z L, Lv G P, Liu X Z, Wang W J, Zhou S, Wei W, Jiang S, Liu Y N, Luo S, Lu X H, Liu Z, Zhang S S 2013 Opt. Commun. 306 117Google Scholar

    [12]

    Yan B Q, Li J, Zhang M J, Xu Y, Yu T, Zhang J Z, Qiao L J, Wang T 2020 Appl. Opt. 59 22Google Scholar

    [13]

    Wang Z L, Chang J, Zhang S S, Luo S, Jia C W, Jiang S, Sun B N, Liu Y N, Wei W, Liu X H, Lv G P 2015 Optik 126 270Google Scholar

    [14]

    Wang Z L, Chang J, Zhang S S, Sun B N, Jiang S, Luo S, Jia C W, Liu Y N, Liu X H, Lv G P, Liu X Z 2014 Opt. Quant. Electron. 46 821Google Scholar

    [15]

    Li J, Li Y T, Zhang M J, Liu Y, Zhang J J, Yan B Q, Wang D, Jin B Q 2017 Photonic Sens. 8 103Google Scholar

    [16]

    李云亭, 张明江, 刘毅, 张建忠 2017 光电工程 34 20Google Scholar

    Li Y T, Zhang M J, Liu Y, Zhang J Z 2017 Optoelectron. Eng. 34 20Google Scholar

    [17]

    汤玉泉, 孙苗, 李俊, 杨爽, Brian Culshaw, 董凤忠 2015 光子学报 44 112Google Scholar

    Tang Y Q, Sun M, Li J, Yang S, Brian C, Dong F Z 2015 Acta Photon. Sin. 44 112Google Scholar

    [18]

    Wang Z L, Chang J, Zhang S S, Luo S, Jia C W, Jiang S, Sun B N, Liu Y N, Liu X H, Lv G P 2015 IEEE Sens. J. 15 1061Google Scholar

    [19]

    Suh K, Lee C 2008 Opt. Lett. 33 1845Google Scholar

    [20]

    Wang Z L, Zhang S S, Chang J, Lv G P, Wang W J, Jiang S, Liu X Z, Liu X H, Luo S, Sun B N, Liu Y N 2013 Opt. Quant. Electron. 45 1087Google Scholar

    [21]

    孙苗, 汤玉泉, 杨爽, 李俊, Brian Culshaw, 董凤忠 2015 光电子·激光 26 2070Google Scholar

    Sun M, Tang Y Q, Yang S, Li J, Brain C, Dong F Z 2015 J. Optoelectron. Laser 26 2070Google Scholar

    [22]

    Wang Z, Sun X H, Xue Q, Wang Y L, Qi Y L, Wang X S 2017 Opt. Laser Technol. 93 224Google Scholar

    [23]

    马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬 2020 物理学报 69 030701Google Scholar

    Ma T B, Zi B W, Guo Y C, Ling L Y, Huang Y R, Jia X F 2020 Acta Phys. Sin. 69 030701Google Scholar

    [24]

    Chakraborty A L, Sharma R K, Saxena M K, Kher S 2007 Opt. Commun. 274 396Google Scholar

  • [1] 杨文斌, 张华磊, 齐新华, 车庆丰, 周江宁, 白冰, 陈爽, 母金河. 非平衡等离子体流场相干反斯托克斯拉曼散射光谱计算及振转温度测量. 物理学报, 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] 杨玉莲, 刘黎明, 邓庆雪, 贾新鸿, 梁文燕, 姜利, 宋伟杰, 牟欣扬. 非线性效应对前向受激布里渊散射分布式传感的影响. 物理学报, 2022, 71(15): 154206. doi: 10.7498/aps.71.20220313
    [3] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底. 物理学报, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [4] 田子阳, 赵会杰, 尉昊赟, 李岩. 基于混合飞秒/皮秒相干反斯托克斯拉曼散射的动态高温燃烧场温度测量. 物理学报, 2021, 70(21): 214203. doi: 10.7498/aps.70.20211144
    [5] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [6] 张敏, 闫顺成, 高永, 张少锋, 马新文. 分子离子碎裂过程中动能释放的校准方法. 物理学报, 2020, 69(20): 203401. doi: 10.7498/aps.69.20200901
    [7] 张倩, 王亚辉, 张明江, 张建忠, 乔丽君, 王涛, 赵乐. 毫米级高分辨率的混沌激光分布式光纤测温技术. 物理学报, 2019, 68(10): 104208. doi: 10.7498/aps.68.20190018
    [8] 彭亚晶, 孙爽, 宋云飞, 杨延强. 液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱. 物理学报, 2018, 67(2): 024208. doi: 10.7498/aps.67.20171828
    [9] 管桦, 黄垚, 李承斌, 高克林. 高准确度的钙离子光频标. 物理学报, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [10] 吕明涛, 延明月, 艾保全, 高天附, 郑志刚. 过阻尼布朗棘轮的斯托克斯效率研究. 物理学报, 2017, 66(22): 220501. doi: 10.7498/aps.66.220501
    [11] 陈文杰, 江俊峰, 刘琨, 王双, 马喆, 张晚琛, 刘铁根. 基于相干光时域反射型的光纤分布式声增敏传感研究. 物理学报, 2017, 66(7): 070706. doi: 10.7498/aps.66.070706
    [12] 刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨. 相干反斯托克斯拉曼散射显微成像技术研究. 物理学报, 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [13] 张赛文, 陈丹妮, 刘双龙, 刘伟, 牛憨笨. 纳米分辨相干反斯托克斯拉曼散射显微成像. 物理学报, 2015, 64(22): 223301. doi: 10.7498/aps.64.223301
    [14] 刘双龙, 刘伟, 陈丹妮, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成. 物理学报, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [15] 尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨. 多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究. 物理学报, 2014, 63(7): 073301. doi: 10.7498/aps.63.073301
    [16] 刘伟, 陈丹妮, 刘双龙, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术及其探测极限分析. 物理学报, 2013, 62(16): 164202. doi: 10.7498/aps.62.164202
    [17] 申向伟, 余重秀, 桑新柱, 苑金辉, 韩颖, 夏长明, 侯蓝田, 饶芬, 夏民, 尹霄丽. 光子晶体光纤中高效的反斯托克斯信号产生. 物理学报, 2012, 61(4): 044203. doi: 10.7498/aps.61.044203
    [18] 童 治, 魏 淮, 简水生. 分布式光纤拉曼放大器在长距离光传输系统中的优化设计. 物理学报, 2006, 55(4): 1873-1882. doi: 10.7498/aps.55.1873
    [19] 邓少永, 郭少锋, 陆启生, 程湘爱. 抽运光参数对受激布里渊散射的影响. 物理学报, 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [20] 刘 超, 张尚剑, 谢 亮, 祝宁华. 构建虚拟网络的网络分析仪夹具校准新方法. 物理学报, 2005, 54(6): 2606-2610. doi: 10.7498/aps.54.2606
计量
  • 文章访问数:  5484
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-06-15
  • 上网日期:  2022-10-05
  • 刊出日期:  2022-10-20

/

返回文章
返回