搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

啁啾相移光纤光栅分布式应变与应变点精确定位传感研究

裴丽 吴良英 王建帅 李晶 宁提纲

引用本文:
Citation:

啁啾相移光纤光栅分布式应变与应变点精确定位传感研究

裴丽, 吴良英, 王建帅, 李晶, 宁提纲

Phase shift chirped fiber Bragg grating based distributed strain and position sensing

Pei Li, Wu Liang-Ying, Wang Jian-Shuai, Li Jing, Ning Ti-Gang
PDF
导出引用
  • 利用啁啾相移光纤光栅狭缝的中心波长对应变点和应变量的波长敏感性,实现应变与应变点精确定位的传感.当啁啾光纤光栅上的某一位置产生微应变时,该应变点会产生相移,其频谱则会出现一个与之对应的狭缝,且狭缝的深度和中心波长与应变的大小和位置相关.当串接不同中心波长的啁啾光纤光栅后,即可实现一定范围内的分布式应变与应变点精确定位检测.本文通过V-I传输矩阵法建立了狭缝深度和中心波长关于应变量和应变位置的理论模型,分析结果表明理论上可以实现微米量级的精确定位.搭建了级联啁啾相移光纤光栅的分布式应变传感装置,实验获得的最大应变灵敏度为0.19pm/.该精确定位传感装置在先进制造、精密加工、航空航天、铁路系统等高新技术领域具有重要的应用前景.
    A corresponding peak appears on the transmission spectrum, when the micro-strain is induced in a chirped fiber Bragg grating (CFBG). The center wavelength of the peak is sensitive to the location and magnitude of the strain, thus, the CFBG can be used in distributed strain and strain-points precise position sensing. The depth and center wavelength of the peak are determined by the magnitude and location of the strain. The cascaded CFBGs under different center wavelengths can realize the distributed strain and strain-point precise positioning. Considering the fact that the depth and center wavelength of the peak are related to the magnitude and location of strain, a theoretical model is established with V-I transmission matrix formalism. Theoretically, cascaded CFGBs can realize accurately the positioning of micron-scale. Experimentally, two CFBGs are cascaded and a sensitivity of 0.19 pm/ is obtained. The proposed precise position sensing can be applied to the fields of advanced manufacturing, precision machining, aerospace, railway-system, etc.
      通信作者: 裴丽, lipei@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61525501)资助的课题.
      Corresponding author: Pei Li, lipei@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61525501).
    [1]

    Morey W W, Meltz G, Glenn W H 1989 Proc. SPIE 1169 98

    [2]

    Patrick H J, Williams G M, Kersey A D, Pedrazzani J R, Vengsarkar A M 1996 IEEE Photon. Tech. L. 8 1223

    [3]

    Liang W, Huang Y, Xu Y, Lee R K, Yariv A 2005 Appl. Phys. Lett. 86 151122

    [4]

    Guan B O, Tam H Y, Tao X M, Dong X Y 2000 IEEE Photon. Tech. L. 12 675

    [5]

    Cai Z, Liu F, Guo T, Guan B O, Peng G D, Albert J 2015 Opt. Express 23 20971

    [6]

    Chryssis A N, Lee S M, Lee S B, Saini S S, Dagenais M 2005 IEEE Photon. Tech. L. 17 1253

    [7]

    Laudati A, Mennella F, Esposito M, Cusano A, Giordano M, Breglio G, Sorge S, Calisti T C, Torre A, D'Altrui G, Cutolo A 2007 Proc. SPIE 6619 66191C

    [8]

    Fujihashi K, Aoki T, Okutsu M, Arai K, Komori T, Fujita H, Kurosawa Y, Fujinawa Y, Sasaki K 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies IEEE 349

    [9]

    Capoluongo P, Ambrosino C, Campopiano S, Cutolo A, Giordano M, Bovio I, Lecce L, Cusano A 2007 Sensor Actuat. A:Phys. 133 415

    [10]

    Chan T H T, Yu L, Tam H Y, Ni Y Q, Liu S Y, Chung W H, Cheng L K 2006 Eng. Struct. 28 648

    [11]

    Schulz W L, Conte J P, Udd E 2001 Proc. SPIE 4330 56

    [12]

    Chen X, Painchaud Y, Ogusu K, Li H 2010 J. Lightwave Technol. 28 2017

    [13]

    Xian L, Li H 2013 J. Lightwave Technol. 31 1185

    [14]

    Wu L Y, Pei L, Liu L, Wang J S 2016 Opt. Laser Technol. 79 15

    [15]

    Capmany J, Muriel M A, Sales S, Rubio J J, Pastor D 2003 J. Lightwave Technol. 21 3125

    [16]

    Victor G M, Muriel M A, Capmany J 2005 IEEE Photon. Tech. L. 17 2343

    [17]

    Ning T G, Fu Y J, Tan Z W, Liu Y, Pei L, Jian S S 2004 Chin. J. Lasers 31 77 (in Chinese)[宁提纲, 傅永军, 谭中伟, 刘艳, 裴丽, 简水生2004中国激光31 77]

  • [1]

    Morey W W, Meltz G, Glenn W H 1989 Proc. SPIE 1169 98

    [2]

    Patrick H J, Williams G M, Kersey A D, Pedrazzani J R, Vengsarkar A M 1996 IEEE Photon. Tech. L. 8 1223

    [3]

    Liang W, Huang Y, Xu Y, Lee R K, Yariv A 2005 Appl. Phys. Lett. 86 151122

    [4]

    Guan B O, Tam H Y, Tao X M, Dong X Y 2000 IEEE Photon. Tech. L. 12 675

    [5]

    Cai Z, Liu F, Guo T, Guan B O, Peng G D, Albert J 2015 Opt. Express 23 20971

    [6]

    Chryssis A N, Lee S M, Lee S B, Saini S S, Dagenais M 2005 IEEE Photon. Tech. L. 17 1253

    [7]

    Laudati A, Mennella F, Esposito M, Cusano A, Giordano M, Breglio G, Sorge S, Calisti T C, Torre A, D'Altrui G, Cutolo A 2007 Proc. SPIE 6619 66191C

    [8]

    Fujihashi K, Aoki T, Okutsu M, Arai K, Komori T, Fujita H, Kurosawa Y, Fujinawa Y, Sasaki K 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies IEEE 349

    [9]

    Capoluongo P, Ambrosino C, Campopiano S, Cutolo A, Giordano M, Bovio I, Lecce L, Cusano A 2007 Sensor Actuat. A:Phys. 133 415

    [10]

    Chan T H T, Yu L, Tam H Y, Ni Y Q, Liu S Y, Chung W H, Cheng L K 2006 Eng. Struct. 28 648

    [11]

    Schulz W L, Conte J P, Udd E 2001 Proc. SPIE 4330 56

    [12]

    Chen X, Painchaud Y, Ogusu K, Li H 2010 J. Lightwave Technol. 28 2017

    [13]

    Xian L, Li H 2013 J. Lightwave Technol. 31 1185

    [14]

    Wu L Y, Pei L, Liu L, Wang J S 2016 Opt. Laser Technol. 79 15

    [15]

    Capmany J, Muriel M A, Sales S, Rubio J J, Pastor D 2003 J. Lightwave Technol. 21 3125

    [16]

    Victor G M, Muriel M A, Capmany J 2005 IEEE Photon. Tech. L. 17 2343

    [17]

    Ning T G, Fu Y J, Tan Z W, Liu Y, Pei L, Jian S S 2004 Chin. J. Lasers 31 77 (in Chinese)[宁提纲, 傅永军, 谭中伟, 刘艳, 裴丽, 简水生2004中国激光31 77]

  • [1] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟. 物理学报, 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [2] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [3] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究. 物理学报, 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [4] 卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹. 双轴向应变对单层GeSe气体传感特性的影响. 物理学报, 2020, 69(19): 196801. doi: 10.7498/aps.69.20200539
    [5] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [6] 肖美霞, 梁尤平, 陈玉琴, 刘萌. 应变对两层半氢化氮化镓薄膜电磁学性质的调控机理研究. 物理学报, 2016, 65(2): 023101. doi: 10.7498/aps.65.023101
    [7] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变. 物理学报, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [8] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [9] 王玉珍, 马颖, 周益春. 外延压应变对BaTiO3铁电体抗辐射性能影响的分子动力学研究. 物理学报, 2014, 63(24): 246101. doi: 10.7498/aps.63.246101
    [10] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [11] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控. 物理学报, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [12] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [13] 任晓栋, 刘建军, 张文清. 应变对层状锰系锂离子电池正极材料输出电压的影响. 物理学报, 2012, 61(18): 183101. doi: 10.7498/aps.61.183101
    [14] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质. 物理学报, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [15] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [16] 姚文杰, 俞重远, 刘玉敏, 芦鹏飞. 基于连续弹性理论分析量子线线宽对应变分布和带隙的影响. 物理学报, 2009, 58(2): 1185-1189. doi: 10.7498/aps.58.1185
    [17] 崔玉亭, 游素琴, 武亮, 马勇, 陈京兰, 潘复生, 吴光恒. Ni53.2Mn22.6Ga24.2单晶的两步热弹性马氏体相变及其应力应变特性. 物理学报, 2009, 58(12): 8596-8601. doi: 10.7498/aps.58.8596
    [18] 姚 飞, 薛春来, 成步文, 王启明. 重掺B对应变SiGe材料能带结构的影响. 物理学报, 2007, 56(11): 6654-6659. doi: 10.7498/aps.56.6654
    [19] 张开骁, 陈敦军, 沈 波, 陶亚奇, 吴小山, 徐 金, 张 荣, 郑有炓. 表面钝化前后Al0.22Ga0.78N/GaN异质结势垒层应变的高温特性. 物理学报, 2006, 55(3): 1402-1406. doi: 10.7498/aps.55.1402
    [20] 王焕友, 曹晓平, 蒋亦民, 刘 佑. 静止颗粒体的应变与弹性. 物理学报, 2005, 54(6): 2784-2790. doi: 10.7498/aps.54.2784
计量
  • 文章访问数:  5584
  • PDF下载量:  327
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-10
  • 修回日期:  2016-10-28
  • 刊出日期:  2017-04-05

/

返回文章
返回