搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声波导单模光纤中后向受激布里渊散射的声模分析

冯云龙 侯尚林 雷景丽 武刚 晏祖勇

引用本文:
Citation:

声波导单模光纤中后向受激布里渊散射的声模分析

冯云龙, 侯尚林, 雷景丽, 武刚, 晏祖勇

Analysis of acoustic modes induced by backward stimulated Brillouin scattering in acoustic wave-guided single mode optical fibers

Feng Yun-Long, Hou Shang-Lin, Lei Jing-Li, Wu Gang, Yan Zu-Yong
PDF
HTML
导出引用
  • 本文推导了单模光纤中的声波亥姆霍兹方程, 利用分离变量法求解并获得正规声波导导模的特征方程, 定义了声模的归一化频率, 结合贝塞尔函数的宗量近似分析了声波模式的特征值范围、截止频率和远离截止, 探讨了声模的色散和布里渊增益谱的多峰成因. 研究结果表明单模光纤中纵向声波基模L01模无截止, 主要被限制在纤芯中, 与光基模耦合形成布里渊增益谱的主峰; 高阶声模都存在低频截止, 在包层分布比基模多, 与LP01模耦合形成布里渊增益谱的次峰. 只有纵向L0n声模对后向布里渊增益谱有贡献, 纤芯掺锗浓度增大能使布里渊增益谱发生红移, 声模数量增多, L01模的增益峰值逐渐变大而高阶模的贡献减小. 泵浦波长为1.55 μm, 纤芯掺锗浓度3.65%、纤芯半径4.2 μm的单模光纤存在4个L0n和16个Lmn (m > 0)声模, 声模L01, L03, L04与光模LP01声光耦合产生布里渊增益谱的1个主峰和2个弱峰; 纤芯掺锗浓度15%, 纤芯半径1.3 μm的单模光纤存在3个L0n模和7个Lmn (m > 0)模, L01, L02, L03模与LP01模声光耦合使得布里渊增益谱呈现3个主峰. 这些结论可以完全解释相应的实验现象, 也为光纤SBS声波导研究及应用提供理论参考.
    In this work, the acoustic Helmholtz equation is derived, and its analytical solution and the characteristic equation of the uniform guide mode in single mode fibers are obtained by the method of separation of variables. The normalized frequency of the acoustic mode is defined. By combining the argument approximation of the Bessel function are analyzed the eigenvalue range of the acoustic mode, the cut-off frequency, far from the cut-off state of the acoustic mode induced by backward stimulated Brillouin scattering, the dispersion and the multi-peak Brillouin gain spectrum. The research results indicate that the longitudinal acoustic fundamental mode L01 cannot be cut-off and is mainly confined in the fiber core, which is coupled with the optical fundamental mode LP01 to form the main peak of the Brillouin gain spectrum. The other higher-order acoustic modes all have low cut-off frequencies and are distributed more in the fiber cladding than mode L01 which couples with the optical fundamental mode LP01 to form the subpeaks of the Brillouin gain spectrum. The transverse normalized phase constant and effective refractive index of the acoustic mode increase with normalized frequency increasing. Only longitudinal acoustic modes L0n contribute to backward Brillouin gain spectrum in single mode fiber. When the GeO2 concentration is less than 4% and core radius is 4.5 μm, the single mode characteristics of the fiber remain unchanged, but the maximum number of acoustic L0n modes is 4. With the increase of GeO2 concentration in the fiber core, the Brillouin gain spectrum is red-shifted and the number of acoustic modes increases, the Brillouin gain peak value of L01 mode gradually increases, and the contributions of higher-order modes decrease. The single-mode fiber with a core’s germanium doped concentration of 3.65% and core radius of 4.3 μm has 4 L0n modes and 16 Lmn (m>0) modes at a wavelength of 1.55 μm, with one main peak and two subpeaks in the Brillouin gain spectrum appearing due to the acousto-optic coupling of the acoustic L01, L03, and L04 modes with the optical LP01 mode. The single-mode fiber with a core’s germanium doped concentration of 15% and core radius of 1.3 μm has 3 L0n modes and 7 Lmn (m>0) modes, with the Brillouin gain spectrum having 3 main peaks due to the acousto-optic coupling of the L01, L02, and L03 modes with the LP01 mode. These conclusions are well consistent with the reported experimental phenomena and provide theoretical references for studying and utilizing the SBS acoustic waveguide in optical fibers.
      通信作者: 侯尚林, houshanglin@vip.163.com
    • 基金项目: 国家自然科学基金(批准号: 61665005)资助的课题.
      Corresponding author: Hou Shang-Lin, houshanglin@vip.163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61665005).
    [1]

    Shimizu K, Horiguchi T, Koyamada Y, Kurashima T 1993 Opt. Lett. 18 185Google Scholar

    [2]

    Bao X Y, Chen L 2012 Sensors-Basel 12 8601Google Scholar

    [3]

    Li M J, Xing C, Wang J, Gray S, Liu A P, Demeritt J A, Ruffin A B, Crowley A M, Walton D T, Zenteno L A 2007 Opt. Express 15 8290Google Scholar

    [4]

    Gonzalez H M, Song K Y, Thévenaz L 2005 Appl. Phys. Lett. 87 081113Google Scholar

    [5]

    Hon D T 1980 Opt. Lett. 5 516Google Scholar

    [6]

    Jen C K, Neron C, Shang A, Abe K, Bonnell L, Kushibiki J 1993 J. Am. Ceram. Soc. 76 712Google Scholar

    [7]

    Waldron R 1969 IEEE Trans. Microwave Theory Tech. 17 893Google Scholar

    [8]

    Shelby R, Levenson M, Bayer P 1985 Phys. Rev. B 31 5244Google Scholar

    [9]

    Shibata N, Okamoto K, Azuma Y 1989 J. Opt. Soc. Am. B 6 1167Google Scholar

    [10]

    Tartara L, Codemard C, Maran J N, Cherif R, Zghal M 2009 Opt. Commun. 282 2431Google Scholar

    [11]

    Poulton C G, Pant R, Eggleton B J 2013 J. Opt. Soc. Am. B 30 2657Google Scholar

    [12]

    Xing C, Ke C J, Guo Z, Yang K J, Wang H Y, Zhong Y B, Liu D M 2018 Opt. Express 26 28793Google Scholar

    [13]

    Tsvetkov S V, Likhachev M E 2023 B. Lebedev. Phys. Inst+. 50 291Google Scholar

    [14]

    Huang B, Wang J Q, Shao X P 2023 Photonics-Basel 10 282Google Scholar

    [15]

    He D Y, Liao M S, Hu L L, Yu C L, Qi Y F, Shen H, Chen L, Yang Q B, Liu M Z, Wang M, Zhou Q L, Gao W Q, Wang T X 2023 Opt. Express 31 1888Google Scholar

    [16]

    Kobyakov A, Kumar S, Chowdhury D Q, Ruffin A B, Sauer M, Bickham S R, Mishra R 2005 Opt. Express 13 5338Google Scholar

    [17]

    Dong Y, Ren G B, Xiao H, Gao Y X, Li H S, Xiao S Y, Jian S S 2017 Ieee Photonic Tech. L. 29 1955Google Scholar

    [18]

    吴重庆 2000光波导理论(北京: 清华大学出版社) 第41—43页

    Wu C Q 2000 Optical Waveguide Theory (Beijing: Tsinghua University Press) pp41–43

    [19]

    Zou W W, He Z Y, Hotate K 2008 Opt. Express 16 10006Google Scholar

    [20]

    Jia D F, Ge C F 2004 Nonlinear Fiber Optics (Beijing: Electronic Industry Press) 第246—247页

    贾东方, 葛春风 2014非线性光纤光学(北京: 电子工业出版社) pp246–247

    [21]

    Ruffin A B, Li M J, Chen X, Kobyakov A, Annunziata F 2005 Opt. Lett. 30 3123Google Scholar

    [22]

    Zou W W, He Z Y, Hotate K 2006 Ieee Photonic Tech. L. 18 2487Google Scholar

    [23]

    Dasgupta S, Poletti F, Liu S, Petropoulos P, Richardson D J, Grüner-Nielsen L, Herstrøm S 2011 J. Lightwave Techno. 29 22Google Scholar

    [24]

    Koyamada Y, Sato S, Nakamura S, Sotobayashi H, Chujo W 2004 J. Lightwave Techno. 22 631Google Scholar

    [25]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photonics 2 1Google Scholar

  • 图 1  (a) L0n模; (b) L1n模的Ua取值范围

    Fig. 1.  The Ua value range of (a) L0n mode and (b) L1n mode

    图 2  声模色散曲线 (a) UaVa的关系; (b) na, effVa的关系

    Fig. 2.  Dispersion curve of acoustic mode: (a) $U_{{\mathrm{a}}}=f(V_{{\mathrm{a}}}) $; (b) $n_{{\mathrm{a,eff}}}=f(V_{\mathrm{a}}) $.

    图 3  VaVo随掺锗浓度的变化

    Fig. 3.  Variation of Va and Vo with germanium doped concentration.

    图 4  布里渊增益谱随掺锗浓度变化曲线

    Fig. 4.  BGS variation curves with germanium doped concentration.

    图 5  Fiber 1的(a) L0n模特征方程和(b)归一化场分布

    Fig. 5.  (a) L0n mode characteristic equation and (b) normalized field distribution of Fiber 1.

    图 6  Fiber 1的布里渊增益谱

    Fig. 6.  The BGS of Fiber 1.

    图 7  Fiber 2的(a) L0n模特征方程和(b)归一化场分布

    Fig. 7.  (a) L0n mode characteristic equation and (b) normalized field distribution of Fiber 2.

    图 8  Fiber 2的布里渊增益谱

    Fig. 8.  The BGS of Fiber 2.

    表 1  光纤参数

    Table 1.  Optical fiber parameters of two kinds of fiber.

    Parameters Fiber 1[22] Fiber 2[23]
    a/μm 4.2 1.3
    b/μm 62.5 62.5
    no, 1 1.4633 1.4799
    no, 2 1.458 1.458
    λp/μm 1.549 1.550
    vl, 1/(m·s–1) 5787.8 5302.1
    vl, 2/(m·s–1) 5944 5944
    下载: 导出CSV

    表 2  Fiber 1和Fiber 2的Lmn模BFS (GHz)

    Table 2.  BFS (GHz) of the Lmn modes in Fiber 1 and Fiber 2.

    Fiber type mn
    1234
    Fiber 1010.924410.969411.048811.1576
    110.940711.003211.0985
    210.962011.041811.1576
    310.988011.084811.2052
    411.018511.1318
    511.053211.1812
    611.0921
    711.1349
    811.1814
    Fiber 2010.090210.472111.0857
    110.230610.7466
    210.411711.0438
    310.6287
    410.8779
    511.1511
    下载: 导出CSV

    表 3  两种单模光纤的理论计算与实验结果比较

    Table 3.  Comparison of experimental and theoretical calculation results of two single-mode optical fibers.

    Fiber typeAeff/μm2Aao/μm2IBFS/GHzRelative error/%
    ReferenceThis paper
    Fiber 176.3278.870.966810.9170[22]10.92440.0678
    15612.350.004910.9630[22]10.96940.0584
    14173.600.005411.0430[22]11.04880.0525
    11249.480.006811.1540[22]11.15760.0323
    Fiber 221.0226.060.806810.0000[23]10.09020.8087
    482.470.043610.5000[23]10.47210.2657
    328.890.063911.1100[23]11.08570.2187
    下载: 导出CSV
  • [1]

    Shimizu K, Horiguchi T, Koyamada Y, Kurashima T 1993 Opt. Lett. 18 185Google Scholar

    [2]

    Bao X Y, Chen L 2012 Sensors-Basel 12 8601Google Scholar

    [3]

    Li M J, Xing C, Wang J, Gray S, Liu A P, Demeritt J A, Ruffin A B, Crowley A M, Walton D T, Zenteno L A 2007 Opt. Express 15 8290Google Scholar

    [4]

    Gonzalez H M, Song K Y, Thévenaz L 2005 Appl. Phys. Lett. 87 081113Google Scholar

    [5]

    Hon D T 1980 Opt. Lett. 5 516Google Scholar

    [6]

    Jen C K, Neron C, Shang A, Abe K, Bonnell L, Kushibiki J 1993 J. Am. Ceram. Soc. 76 712Google Scholar

    [7]

    Waldron R 1969 IEEE Trans. Microwave Theory Tech. 17 893Google Scholar

    [8]

    Shelby R, Levenson M, Bayer P 1985 Phys. Rev. B 31 5244Google Scholar

    [9]

    Shibata N, Okamoto K, Azuma Y 1989 J. Opt. Soc. Am. B 6 1167Google Scholar

    [10]

    Tartara L, Codemard C, Maran J N, Cherif R, Zghal M 2009 Opt. Commun. 282 2431Google Scholar

    [11]

    Poulton C G, Pant R, Eggleton B J 2013 J. Opt. Soc. Am. B 30 2657Google Scholar

    [12]

    Xing C, Ke C J, Guo Z, Yang K J, Wang H Y, Zhong Y B, Liu D M 2018 Opt. Express 26 28793Google Scholar

    [13]

    Tsvetkov S V, Likhachev M E 2023 B. Lebedev. Phys. Inst+. 50 291Google Scholar

    [14]

    Huang B, Wang J Q, Shao X P 2023 Photonics-Basel 10 282Google Scholar

    [15]

    He D Y, Liao M S, Hu L L, Yu C L, Qi Y F, Shen H, Chen L, Yang Q B, Liu M Z, Wang M, Zhou Q L, Gao W Q, Wang T X 2023 Opt. Express 31 1888Google Scholar

    [16]

    Kobyakov A, Kumar S, Chowdhury D Q, Ruffin A B, Sauer M, Bickham S R, Mishra R 2005 Opt. Express 13 5338Google Scholar

    [17]

    Dong Y, Ren G B, Xiao H, Gao Y X, Li H S, Xiao S Y, Jian S S 2017 Ieee Photonic Tech. L. 29 1955Google Scholar

    [18]

    吴重庆 2000光波导理论(北京: 清华大学出版社) 第41—43页

    Wu C Q 2000 Optical Waveguide Theory (Beijing: Tsinghua University Press) pp41–43

    [19]

    Zou W W, He Z Y, Hotate K 2008 Opt. Express 16 10006Google Scholar

    [20]

    Jia D F, Ge C F 2004 Nonlinear Fiber Optics (Beijing: Electronic Industry Press) 第246—247页

    贾东方, 葛春风 2014非线性光纤光学(北京: 电子工业出版社) pp246–247

    [21]

    Ruffin A B, Li M J, Chen X, Kobyakov A, Annunziata F 2005 Opt. Lett. 30 3123Google Scholar

    [22]

    Zou W W, He Z Y, Hotate K 2006 Ieee Photonic Tech. L. 18 2487Google Scholar

    [23]

    Dasgupta S, Poletti F, Liu S, Petropoulos P, Richardson D J, Grüner-Nielsen L, Herstrøm S 2011 J. Lightwave Techno. 29 22Google Scholar

    [24]

    Koyamada Y, Sato S, Nakamura S, Sotobayashi H, Chujo W 2004 J. Lightwave Techno. 22 631Google Scholar

    [25]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photonics 2 1Google Scholar

  • [1] 杨熙飞, 尚磊, 邹林儿, 沈云. 带空气狭缝倒置结构的脊型硫系光波导后向受激布里渊散射研究. 物理学报, 2024, 73(1): 014206. doi: 10.7498/aps.73.20231272
    [2] 殷敬伟, 马丁一, 张宇翔, 生雪莉. 极地海冰声波导建模综述. 物理学报, 2022, 71(8): 084301. doi: 10.7498/aps.71.20211950
    [3] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性. 物理学报, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [4] 史久林, 许锦, 罗宁宁, 王庆, 张余宝, 张巍巍, 何兴道. 水中受激拉曼散射的能量增强及受激布里渊散射的光学抑制. 物理学报, 2019, 68(4): 044201. doi: 10.7498/aps.68.20181548
    [5] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [6] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变. 物理学报, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [7] 张磊, 李金增. 水中受激布里渊散射脉冲的反常压缩. 物理学报, 2014, 63(5): 054202. doi: 10.7498/aps.63.054202
    [8] 章扬忠, 谢涛. 轴对称环状静电模的漂移波湍流参量激发理论研究. 物理学报, 2014, 63(3): 035202. doi: 10.7498/aps.63.035202
    [9] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [10] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究. 物理学报, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [11] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [12] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响. 物理学报, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [13] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [14] 郭少锋, 林文雄, 陆启生, 陈 燧, 林宗志, 邓少永, 朱永祥. 熔融石英玻璃受激布里渊散射效应实验研究. 物理学报, 2007, 56(4): 2218-2222. doi: 10.7498/aps.56.2218
    [15] 王雨雷, 吕志伟, 何伟明, 张 祎. 一种大能量受激布里渊散射相位共轭镜的研究. 物理学报, 2007, 56(2): 883-888. doi: 10.7498/aps.56.883
    [16] 哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李 强, 何伟明. 受激布里渊散射光脉冲波形的研究. 物理学报, 2007, 56(2): 878-882. doi: 10.7498/aps.56.878
    [17] 哈斯乌力吉, 吕志伟, 李 强, 巴德欣, 张 祎, 何伟明. 受激布里渊散射介质光学击穿的研究. 物理学报, 2006, 55(10): 5252-5256. doi: 10.7498/aps.55.5252
    [18] 哈斯乌力吉, 吕志伟, 何伟明, 李 强, 巴德欣. 光学击穿对受激布里渊散射特性的影响. 物理学报, 2005, 54(12): 5654-5658. doi: 10.7498/aps.54.5654
    [19] 邓少永, 郭少锋, 陆启生, 程湘爱. 抽运光参数对受激布里渊散射的影响. 物理学报, 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [20] 林殿阳, 高洪岩, 王双义, 蒋萧村, 吕志伟. 多纵模受激布里渊散射阈值. 物理学报, 2005, 54(9): 4151-4156. doi: 10.7498/aps.54.4151
计量
  • 文章访问数:  2826
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-27
  • 修回日期:  2023-11-20
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-03-05

/

返回文章
返回