搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴对称环状静电模的漂移波湍流参量激发理论研究

章扬忠 谢涛

引用本文:
Citation:

轴对称环状静电模的漂移波湍流参量激发理论研究

章扬忠, 谢涛

Parametric excitation of axisymmetric toroidal electrostatic mode by drift wave turbulences

Zhang Yang-Zhong, Xie Tao
PDF
导出引用
  • 本文所论述的轴对称环状静电模是指环形磁约束等离子体(如托卡马克)中环向模数为零的近理想静电流体模,它包含有测地声模和基频率与之较低的声模;也含有所谓的‘近零频带状流’. 本文根据冷离子流体模型在圆形磁面构成的准环坐标系中的表示,对涉及以上三种模式的漂移波湍流参量激发理论,在一级环形效应近似下,进行了系统讨论,并证明了带状流的四个新命题. 利用对漂移波能谱的参数化描写,注意到由漂移波能谱径向有限宽度所引发的特性,如波能传播量的双Landau奇点,揭示了有限宽度对径向δ谱所得结果的重要修正:如,对近零频带状流和测地声模的参量激发条件带来的严格限制. 此外,还讨论了密度带状流在高q条件下被激发的可能性. 本文选用合理的物理参数. 采用图示方法详细地讨论了有关的数值结果. 分析表明,测地声模和近零频带状流的参量激发不可能发生在同一小半径处;如果测地声模被参量激发,也应能观察到密度带状流.
    The axisymmetric toroidal electrostatic mode discussed in this paper refers collectively to the nearly ideal electrostatic fluid mode with zero toroidal mode number in magnetically confined toroidal plasmas like tokamak, including geodesic acoustic mode, sound waves and the so-called nearly zero-frequency zonal flow. Use is made of cold ion fluid model in the toroidal coordinate system with a circular cross section to develop the theory of parametric excitation for the three above mentioned modes systematically to the first order of inverse large aspect ratio, which ends up with the four following observations: (1) The density zonal flow is only associated with the excitation of the first harmonic cosine sound wave and is independent of the potential zonal flow. (2) The geodesic acoustic mode is the high frequency branch of the dispersion in the form of coupling between the first harmonic sine sound wave and the nearly zero-frequency zonal flow due to geodesic curvature, while the low frequency branch of the same dispersion is identified to be the ‘toroidally modified nearly zero-frequency zonal flow’. (3) Only a weak coupling exists between the second harmonic sine sound wave and the nearly zero-frequency zonal flow. (4) All cosine sound waves and sine sound waves beyond the second harmonic are decoupled to the nearly zero-frequency zonal flow. A Gaussian type of drift wave energy spectrum with only a few parameters is introduced for calculation. Emphasis is laid on the effects resulting from the finite radial spectrum width such as double Landau-singularity, which reveal a significant modification to the δ -spectrum, thus resulting in serious restriction to the parametric excitation of geodesic acoustic mode and nearly zero-frequency zonal flow. Also discussed is the possibility of excitation of density zonal flow in the high q region. Numerical results are presented graphically and discussed in the reasonable physical regime. It is indicated that the geodesic acoustic mode and the nearly zero-frequency zonal flow cannot be parametrically excited at the same radii, and that if the geodesic acoustic mode is parametrically excited, the density zonal flow is expectedly to be observed.
    • 基金项目: ITER中国计划(批准号:2010GB107000)、国家自然科学基金(批准号:11075162)和国家磁约束聚变科学计划(批准号:2009GB101002)资助的课题.
    • Funds: Project supported by the ITER-China Program (Grant No. 2010GB107000), the National Natural Science Foundation of China (Grant No. NSFC-11075162), and the National Magnetic Confinement Fusion Science Program, China (Grant No. 2009GB101002).
    [1]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35

    [2]

    Fujisawa A 2009 Nucl. Fusion 49 013001

    [3]

    Itoh K, Itoh S I, Diamond P H 2006 Phys. Plasmas 13 055502

    [4]

    Smolyakov A I, Diamond P H, Shevchenko V I 2000 Phys. Plasmas 7 1349

    [5]

    Chakrabarti N, Singh R, Kaw P K, Guzdar P N 2007 Phys. Plasmas 14 052308

    [6]

    Hillesheim J C, Peebles W A, Carter T A, Schmitz L, Rhodes T L 2012 Phys. Plasmas 19 022301

    [7]

    Conway G D, Angioni C, Ryter F, Sauter P, Vicente J, the ASDEX Up-grade Team 2011 Phys. Rev. Lett. 106 065001

    [8]

    McKee G R, Gohil P, Schlossberg D J, Boedo J A, Burrell K H, deGrassie J S, Groebner R J, Moyer R A, Petty C C, Rhodes T L, Schmitz L, Shafer M W, Solomon W M, Umansky M, Wang G, White A E, Xu X 2009 Nucl. Fusion 49 115016

    [9]

    Zhang Y Z, Xie T, Mahajan S M 2012 Phys. Plasmas 19 020701

    [10]

    Gao Z 2013 Phys. Plasmas 20 032501

    [11]

    Guo W, Wang S, Li J G 2010 Phys. Plasmas 17 112510

    [12]

    Qiu Z Y 2010 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [仇志勇 2010 博士学位论文(合肥: 中国科学技术大学)]

    [13]

    Hong W Y, Yan L W, Zhao K J, Dong J Q, Cheng J, Qian J, Luo C W, Xu Z Y, Huang Y, Yang Q W, Lan T, Yu C X, Liu A D 2008 Acta Phys. Sin. 57 962 (in Chinese) [洪文玉, 严龙文, 赵开君, 董家齐, 程均, 钱俊, 罗萃文, 徐征宇, 黄渊, 杨青巍, 兰涛, 俞昌旋, 刘阿娣 2008 物理学报 57 962]

    [14]

    Peng X D, Qiu X M, Lu H L, Wang S J 2009 Acta Phys. Sin. 58 6387 (in Chinese) [彭晓东, 邱孝明, 陆赫林, 王顺金 2009 物理学报 58 6387]

    [15]

    Lan T, Liu A D, Yu C X, Yan L W, Hong W Y, Zhao K J, Dong J Q, Qian J, Cheng J, Yu D L, Yang Q W 2008 Plasma Phys. Control. Fusion 50 045002

    [16]

    Zhao H L, Lan T, Liu A D, Kong D F, Xie J L, Liu W D, Yu C X, Zhang W, Chang J F, Wan B N, Li J G 2010 Plasma Sci. Technol. 12 262

    [17]

    Kong D F, Liu A D, Lan T, Zhao H L, Sheng H G, Xu G S, Zhang W, Wan B N, Li J G, Chen R, Xie J L, Li H, Liu W D, Yu C X 2013 Nucl. Fusion 53 113008

    [18]

    Kong D F, Liu A D, Lan T, Cui Z Y, Yu D L, Yan L W, Zhao H L, Sheng H G, Chen R, Xie J L, Li H, Liu W D, Yu C X, Hong W Y, Cheng J, Zhao K J, Dong J Q, Duan X R 2013 Plasma Phys. 53 123006

    [19]

    Hasegawa A, Mima K 1978 Phys. Fluids 12 87

    [20]

    Zhang Y Z, Xie T 2013 Nucl. Fusion & Plasma Phys. 33 1 (in Chinese) [章扬忠, 谢涛 2013 核聚变与等离子体物理 33 1]

    [21]

    Braginskii S I (edited by Leontovich M A) 1965 Reviews of Plasma Physics 1 (New York: Consultants Bureau) pp205–311

    [22]

    Abramowitz M, Stegun I 1965 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (Dover Publications) 20.2.27

    [23]

    Winsor N, Johnson J, Dawson J 1968 Phys. Fluids 11 2448

  • [1]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35

    [2]

    Fujisawa A 2009 Nucl. Fusion 49 013001

    [3]

    Itoh K, Itoh S I, Diamond P H 2006 Phys. Plasmas 13 055502

    [4]

    Smolyakov A I, Diamond P H, Shevchenko V I 2000 Phys. Plasmas 7 1349

    [5]

    Chakrabarti N, Singh R, Kaw P K, Guzdar P N 2007 Phys. Plasmas 14 052308

    [6]

    Hillesheim J C, Peebles W A, Carter T A, Schmitz L, Rhodes T L 2012 Phys. Plasmas 19 022301

    [7]

    Conway G D, Angioni C, Ryter F, Sauter P, Vicente J, the ASDEX Up-grade Team 2011 Phys. Rev. Lett. 106 065001

    [8]

    McKee G R, Gohil P, Schlossberg D J, Boedo J A, Burrell K H, deGrassie J S, Groebner R J, Moyer R A, Petty C C, Rhodes T L, Schmitz L, Shafer M W, Solomon W M, Umansky M, Wang G, White A E, Xu X 2009 Nucl. Fusion 49 115016

    [9]

    Zhang Y Z, Xie T, Mahajan S M 2012 Phys. Plasmas 19 020701

    [10]

    Gao Z 2013 Phys. Plasmas 20 032501

    [11]

    Guo W, Wang S, Li J G 2010 Phys. Plasmas 17 112510

    [12]

    Qiu Z Y 2010 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [仇志勇 2010 博士学位论文(合肥: 中国科学技术大学)]

    [13]

    Hong W Y, Yan L W, Zhao K J, Dong J Q, Cheng J, Qian J, Luo C W, Xu Z Y, Huang Y, Yang Q W, Lan T, Yu C X, Liu A D 2008 Acta Phys. Sin. 57 962 (in Chinese) [洪文玉, 严龙文, 赵开君, 董家齐, 程均, 钱俊, 罗萃文, 徐征宇, 黄渊, 杨青巍, 兰涛, 俞昌旋, 刘阿娣 2008 物理学报 57 962]

    [14]

    Peng X D, Qiu X M, Lu H L, Wang S J 2009 Acta Phys. Sin. 58 6387 (in Chinese) [彭晓东, 邱孝明, 陆赫林, 王顺金 2009 物理学报 58 6387]

    [15]

    Lan T, Liu A D, Yu C X, Yan L W, Hong W Y, Zhao K J, Dong J Q, Qian J, Cheng J, Yu D L, Yang Q W 2008 Plasma Phys. Control. Fusion 50 045002

    [16]

    Zhao H L, Lan T, Liu A D, Kong D F, Xie J L, Liu W D, Yu C X, Zhang W, Chang J F, Wan B N, Li J G 2010 Plasma Sci. Technol. 12 262

    [17]

    Kong D F, Liu A D, Lan T, Zhao H L, Sheng H G, Xu G S, Zhang W, Wan B N, Li J G, Chen R, Xie J L, Li H, Liu W D, Yu C X 2013 Nucl. Fusion 53 113008

    [18]

    Kong D F, Liu A D, Lan T, Cui Z Y, Yu D L, Yan L W, Zhao H L, Sheng H G, Chen R, Xie J L, Li H, Liu W D, Yu C X, Hong W Y, Cheng J, Zhao K J, Dong J Q, Duan X R 2013 Plasma Phys. 53 123006

    [19]

    Hasegawa A, Mima K 1978 Phys. Fluids 12 87

    [20]

    Zhang Y Z, Xie T 2013 Nucl. Fusion & Plasma Phys. 33 1 (in Chinese) [章扬忠, 谢涛 2013 核聚变与等离子体物理 33 1]

    [21]

    Braginskii S I (edited by Leontovich M A) 1965 Reviews of Plasma Physics 1 (New York: Consultants Bureau) pp205–311

    [22]

    Abramowitz M, Stegun I 1965 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (Dover Publications) 20.2.27

    [23]

    Winsor N, Johnson J, Dawson J 1968 Phys. Fluids 11 2448

  • [1] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响. 物理学报, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [2] 冯云龙, 侯尚林, 雷景丽, 武刚, 晏祖勇. 声波导单模光纤中后向受激布里渊散射的声模分析. 物理学报, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [3] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究. 物理学报, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [4] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 物理学报, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [5] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动. 物理学报, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [6] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性. 物理学报, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [7] 刘泰齐, 陈少永, 牟茂淋, 唐昌建. 超电阻对气球模线性不稳定性影响的理论研究. 物理学报, 2023, 72(14): 145201. doi: 10.7498/aps.72.20230308
    [8] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度. 物理学报, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [9] 郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETRTEAM. 中国聚变工程试验堆上新经典撕裂模和纵场波纹扰动叠加效应对alpha粒子损失影响的数值模拟. 物理学报, 2021, 70(11): 115201. doi: 10.7498/aps.70.20201972
    [10] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [11] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究. 物理学报, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [12] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究. 物理学报, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [13] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响. 物理学报, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [14] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究. 物理学报, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [15] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究. 物理学报, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [16] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究. 物理学报, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [17] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动. 物理学报, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [18] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [19] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究. 物理学报, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [20] 石秉仁. 托卡马克低混杂波电流驱动实验中低混杂波传播的解析分析. 物理学报, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
计量
  • 文章访问数:  5437
  • PDF下载量:  445
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-20
  • 修回日期:  2013-09-26
  • 刊出日期:  2014-02-05

/

返回文章
返回