搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交替寻优生成元素幅值结合混沌随机相位构造循环测量矩阵

郭静波 汪韧

引用本文:
Citation:

交替寻优生成元素幅值结合混沌随机相位构造循环测量矩阵

郭静波, 汪韧

Constructing circulant measurement matrix through alternating optimizing amplitudes together with chaotic stochastic phases of the matrix generating elements

Guo Jing-Bo, Wang Ren
PDF
导出引用
  • 循环矩阵由于其对应离散卷积且具有快速算法被广泛应用于压缩测量矩阵. 本文从循环测量矩阵生成元素的幅值和相位两个方面探索循环测量矩阵的优化构造, 提出交替寻优生成元素的幅值并结合混沌随机相位实现循环测量矩阵的最优构造. 由一维和二维信号循环测量矩阵的不同表示形式出发, 将等价字典列向量之间互相干系数的Welch界作为逼近目标, 推导出了一维和二维信号循环测量矩阵生成元素幅值优化的统一数学模型, 提出采用交替寻优方法求解生成元素幅值的最优解. 利用混沌序列构造循环测量矩阵生成元素的随机相位. 与已有的典型循环测量矩阵相比, 本文优化构造的循环测量矩阵所对应的等价字典列向量之间具有更低的互相干性, 这正是所构造的循环测量矩阵优越性的本质所在.
    Circulant measurement matrix has been widely used in compressive sensing because of its high-speed discrete convolution algorithm. The typical work of optimizing circulant measurement matrix was introduced by Wotao Yin in Reference [16]. Motivated by his work, the construction of circulant measurement matrix in this paper is explored from the view point of generating elements' amplitudes and phases; and the optimal construction procedures are proposed based on alternately optimizing amplitudes in conjunction with chaotic stochastic phases of the matrix generating elements. The main idea of this paper is based on two innovations: The first one is to reduce the mutual coherence between column vectors of equivalent dictionary by alternately optimizing the generating elements' amplitudes, thus improving the recovery performance of the circulant measurement matrix. From the different expressions of the circulant matrixes of one-dimensional and two-dimensional signal, by setting the Welch bound for the coefficient of mutual coherence between the column vectors of equivalent dictionary as the approximation objective, two novel unified mathematical models are derived from the optimizing function for generating elements' amplitudes of the two different matrixes. Optimal solutions for generating elements' amplitudes are gained by alternately optimizing method. The second innovation is to construct the generating elements' phases of circulant measurement matrix by utilization of a chaotic sequence with independent property. The chaotic stochastic phase of the circulant measurement matrix generating elements are generated by taking advantage of the chaotic internal certainty, which means an independent identically-distributed randomness sequence can be produced by the chaotic map with the initial value at certain sampling distance. At the same time, the external randomness of chaotic sequence can satisfy the stochastic requirement of circulant measurement matrix. This paper presents the method of constructing chaotic stochastic phase using Cat chaotic map. Experimental results of one-dimensional and two-dimensional signals in the optimized circulant measurement matrix are studied in this paper, which has a better performance as compared with the results of conventional circulant measurement matrixes, such as Gaussian circulant matrix and optimized circulant matrix proposed by Wotao Yin. The column vectors of equivalent dictionary in the optimized circulant measurement matrix have lower mutual coherence, this is the essence of the superiority of the optimized circulant matrix.
    • 基金项目: 国家自然科学基金(批准号:51277100)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51277100).
    [1]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [2]

    Candès E J, Romberg J, Tao T 2006 IEEE Trans. Inform. Theory 52 489

    [3]

    Chen S S, Donoho D L, Saunders M A 2001 SIAM 43 129

    [4]

    Needell D 2009 Ph. D. Dissertation (California: University of California)

    [5]

    Zhang H M, Wang L Y, Yan B, Li L, Xi X Q, Lu L Z 2013 Chin. Phys. B 22 078701

    [6]

    Feng B C, Fang S, Zhang L G, Li H, Tong J J, Li W Q 2013 Acta Phys. Sin. 62 112901 (in Chinese) [冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜 2013 物理学报 62 112901]

    [7]

    Yin W, Morgan S, Yang J F, Zhang Y 2010 Visual Communications and Image Processing (International Society for Optics and Photonics) p77440K

    [8]

    Donoho D L, Elad M 2003 Proc. Natl. Acad. Sci. USA 100 2197

    [9]

    Duarte-Carvajalino J M, Sapiro G 2009 IEEE Trans. Image Process. 18 1395

    [10]

    Abolghasemi V, Ferdowsi S, Sanei S 2012 Signal Process. 92 999

    [11]

    Xu J P, Pi Y M, Cao Z J 2010 EURASIP J. Adv. Signal Process. 2010 43

    [12]

    Li G, Zhu Z H, Yang D H, Chang L P, Bai H 2013 IEEE Trans. Signal Process. 6 2887

    [13]

    Rauhut H, Romberg J, Tropp J A 2012 Applied and Computational Harmonic Analysis 32 242

    [14]

    Romberg J 2009 16th IEEE International Conference on Digital Signal Processing p1

    [15]

    Romberg J 2009 SIAM. J. Imaging Sci. 2 1098

    [16]

    Yin W, Osher S, Xu Y 2014 to appear in Inverse Problems and Imaging

    [17]

    Guo J B, Xu X Z, Shi Q H, Hu T H 2013 Acta Phys. Sin. 62 110508 (in Chinese) [郭静波, 徐新智, 史启航, 胡铁华 2013 物理学报 62 110508]

    [18]

    Candès E J 2008 Comptes. Rendus Math. 346 589

    [19]

    Donoho D L, Elad M 2003 Proc. Natl. Acad. Sci. USA 100 2197

    [20]

    Tropp J A 2004 IEEE Trans. Inform. Theory 50 2231

    [21]

    Gribonval R, Nielsen M 2003 IEEE Trans. Inform. Theory 49 3320

    [22]

    Strohmer T, Heath R W 2003 Appl. Comput. Harmon. Anal. 14 257

    [23]

    Tropp J A, Dhillon I S, Heath R W, Strohmer T 2005 IEEE Trans. Inform. Theory 51 188

    [24]

    Aharon M, Elad M, Bruckstein A 2006 IEEE Trans. Signal Process. 54 4311

    [25]

    Arnold V I, Avez A 1968 Ergodic problems of classical mechanics (New York: Benjamin) pp5-7

    [26]

    Chen G, Mao Y, Chui C K 2004 Chaos Solitons & Fractals 21 749

    [27]

    Guo J B, Wang R 2014 Acta Phys. Sin. 63 198402 (in Chinese) [郭静波, 汪韧 2014 物理学报 63 198402]

    [28]

    Yang J, Zhang Y 2011 SIAM. J. Sci. Comp. 33 250

    [29]

    Martin D, Fowlkes C, Tal D, Malik J 2001 Proceedings 8th IEEE International Conference on Computer Vision July 2001 2 p416

  • [1]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [2]

    Candès E J, Romberg J, Tao T 2006 IEEE Trans. Inform. Theory 52 489

    [3]

    Chen S S, Donoho D L, Saunders M A 2001 SIAM 43 129

    [4]

    Needell D 2009 Ph. D. Dissertation (California: University of California)

    [5]

    Zhang H M, Wang L Y, Yan B, Li L, Xi X Q, Lu L Z 2013 Chin. Phys. B 22 078701

    [6]

    Feng B C, Fang S, Zhang L G, Li H, Tong J J, Li W Q 2013 Acta Phys. Sin. 62 112901 (in Chinese) [冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜 2013 物理学报 62 112901]

    [7]

    Yin W, Morgan S, Yang J F, Zhang Y 2010 Visual Communications and Image Processing (International Society for Optics and Photonics) p77440K

    [8]

    Donoho D L, Elad M 2003 Proc. Natl. Acad. Sci. USA 100 2197

    [9]

    Duarte-Carvajalino J M, Sapiro G 2009 IEEE Trans. Image Process. 18 1395

    [10]

    Abolghasemi V, Ferdowsi S, Sanei S 2012 Signal Process. 92 999

    [11]

    Xu J P, Pi Y M, Cao Z J 2010 EURASIP J. Adv. Signal Process. 2010 43

    [12]

    Li G, Zhu Z H, Yang D H, Chang L P, Bai H 2013 IEEE Trans. Signal Process. 6 2887

    [13]

    Rauhut H, Romberg J, Tropp J A 2012 Applied and Computational Harmonic Analysis 32 242

    [14]

    Romberg J 2009 16th IEEE International Conference on Digital Signal Processing p1

    [15]

    Romberg J 2009 SIAM. J. Imaging Sci. 2 1098

    [16]

    Yin W, Osher S, Xu Y 2014 to appear in Inverse Problems and Imaging

    [17]

    Guo J B, Xu X Z, Shi Q H, Hu T H 2013 Acta Phys. Sin. 62 110508 (in Chinese) [郭静波, 徐新智, 史启航, 胡铁华 2013 物理学报 62 110508]

    [18]

    Candès E J 2008 Comptes. Rendus Math. 346 589

    [19]

    Donoho D L, Elad M 2003 Proc. Natl. Acad. Sci. USA 100 2197

    [20]

    Tropp J A 2004 IEEE Trans. Inform. Theory 50 2231

    [21]

    Gribonval R, Nielsen M 2003 IEEE Trans. Inform. Theory 49 3320

    [22]

    Strohmer T, Heath R W 2003 Appl. Comput. Harmon. Anal. 14 257

    [23]

    Tropp J A, Dhillon I S, Heath R W, Strohmer T 2005 IEEE Trans. Inform. Theory 51 188

    [24]

    Aharon M, Elad M, Bruckstein A 2006 IEEE Trans. Signal Process. 54 4311

    [25]

    Arnold V I, Avez A 1968 Ergodic problems of classical mechanics (New York: Benjamin) pp5-7

    [26]

    Chen G, Mao Y, Chui C K 2004 Chaos Solitons & Fractals 21 749

    [27]

    Guo J B, Wang R 2014 Acta Phys. Sin. 63 198402 (in Chinese) [郭静波, 汪韧 2014 物理学报 63 198402]

    [28]

    Yang J, Zhang Y 2011 SIAM. J. Sci. Comp. 33 250

    [29]

    Martin D, Fowlkes C, Tal D, Malik J 2001 Proceedings 8th IEEE International Conference on Computer Vision July 2001 2 p416

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性. 物理学报, 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 干红平, 张涛, 花燚, 舒君, 何立军. 基于双极性混沌序列的托普利兹块状感知矩阵. 物理学报, 2021, 70(3): 038402. doi: 10.7498/aps.70.20201475
    [3] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [4] 石航, 王丽丹. 一种基于压缩感知和多维混沌系统的多过程图像加密方案. 物理学报, 2019, 68(20): 200501. doi: 10.7498/aps.68.20190553
    [5] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法. 物理学报, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [6] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法. 物理学报, 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [7] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [8] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] 郭静波, 李佳文. 二进制信号的混沌压缩测量与重构. 物理学报, 2015, 64(19): 198401. doi: 10.7498/aps.64.198401
    [10] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [11] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法. 物理学报, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [12] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析. 物理学报, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [13] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [14] 王哲, 王秉中. 压缩感知理论在矩量法中的应用. 物理学报, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [15] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [16] 郭静波, 汪韧. 基于混沌序列和RIPless理论的循环压缩测量矩阵的构造. 物理学报, 2014, 63(19): 198402. doi: 10.7498/aps.63.198402
    [17] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [18] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [19] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [20] 刘会师, 忻向军, 尹霄丽, 余重秀, 张琦. 切比雪夫光混沌发生器的优化. 物理学报, 2009, 58(4): 2231-2234. doi: 10.7498/aps.58.2231
计量
  • 文章访问数:  5854
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-21
  • 修回日期:  2015-02-02
  • 刊出日期:  2015-07-05

/

返回文章
返回