搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯压缩感知的周跳探测与修复方法

李慧 赵琳 李亮

引用本文:
Citation:

基于贝叶斯压缩感知的周跳探测与修复方法

李慧, 赵琳, 李亮

Cycle slip detection and repair based on Bayesian compressive sensing

Li Hui, Zhao Lin, Li Liang
PDF
导出引用
  • 针对观测噪声对周跳探测与修复性能的影响,提出了一种新的利用贝叶斯压缩感知技术进行周跳探测与修复的方法.在历元间-站间载波相位双差观测模型的基础上,通过挖掘周跳信号的稀疏特性,获取感知矩阵,推导并建立稀疏周跳探测模型,利用稀疏贝叶斯学习中的相关向量机原理,结合周跳相关数据的先验信息,基于主动相关决策理论,进行回归估计获得周跳预测值的分布,进而实现周跳的探测与修复.实验表明,新方法在仅利用单频或双频载波相位观测量的情况下能有效探测并修复周跳,性能优于正交匹配追踪法及l1范数法.
    The presence of cycle slips corrupts the carrier phase measurement which is critical for high precision global navigation satellite system static or kinematic positioning. The process of cycle slips is comprised of detecting the slips, estimating its exact integer and making a repair. In this paper, a novel approach to cycle slip detection and repair based on Bayesian compressive sensing is proposed, in order to reduce the noise effects on the performances of cycle slip detection and repair. Unlike traditional cycle slip detection and repair methods, we exploit the sparse property of the cycle slip signal, aiming to obtain the perception matrix and establish the sparse cycle slip detection model. Then in order to estimate and repair the value of cycle slips, the residuals of carrier phase double difference and the interference noise between multiple satellites, when more than one satellite has cycle slips, are taken into consideration, which is used as prior information to obtain the likelihood expression for cycle slip signal. Finally, we use the prior information about signals based on relevance vector machine principle derived from sparse Bayesian learning to predict cycle slip distribution and then estimate the value of cycle slips. The novel approach is tested with the actual collection of satellite data in the experiment. It is shown that the novel approach proposed in this paper can effectively estimate cycle slips and achieve better performance than orthogonal matching pursuit and l1 norm based algorithm when the redundancy of carrier phase is large enough. In the case of single frequency carrier phase observation, when redundancy is not less than 7, the novel approach can completely detect and repair cycle slips; in the case of dual-frequency carrier phase observation, when cycle slips happen in four of the eight satellites, 97.6% probability of accuracy is accomplished by the new approach.
      通信作者: 李慧, lihuiheu@hotmail.com
    • 基金项目: 国家自然科学基金(批准号:61273081)、国家自然科学基金青年基金(批准号:61304235,61401114)、中央高校基本科研业务费专项资金(批准号:HEUCFD1431)和国家留学基金资助的课题.
      Corresponding author: Li Hui, lihuiheu@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61273081), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61304235, 61401114), the Fundamental Research Funds for the Central Universities, China (Grant No. HEUCFD1431), and the Foundation of China Scholarship Council.
    [1]

    Cai C S, Liu Z Z, Xia P F, Dai W J 2013 GPS Solutions 17 247

    [2]

    Parkins A 2011 GPS Solutions 15 391

    [3]

    Ji S Y, Wang Z J, Chen W, Weng D J, Xu Y, Fan S J, Huang B H, Sun G Y, Wang H Q, He Y W 2014 Survey Rev. 46 104

    [4]

    Xu G C 2007 GPS:Theory, Algorithms and Applications (Vol. 2) (Berlin:Springer Science & Business Media) p167

    [5]

    Dai Z, Knedlik S, Loffeld O 2008 Proceedings of 5th Workshop on Positioning, Navigation and Communication Hannover, Germany, March 27-27, 2008 p37

    [6]

    Dai Z 2012 GPS Solutions 16 267

    [7]

    Liu Z Z 2011 J. Geodesy. 85 171

    [8]

    Henkel P, Oku N 2015 International Association of Geodesy Symposia 142 291

    [9]

    De Lacy M C, Reguzzoni M, Sansò F 2012 GPS Solutions 16 353

    [10]

    Zhao Q L, Sun B Z, Dai Z Q, Hu Z G, Shi C, Liu J N 2015 GPS Solutions 19 381

    [11]

    Yao Y F, Gao J X, Wang J, Hu H, Li Z K 2016 Survey Rev. 48 367

    [12]

    Sun B Q, Ou J K, Sheng C Z, Liu J H 2010 Geomat. Inform. Sci. Wuhan Univ. 10 1157 (in Chinese)[孙保琪, 欧吉坤, 盛传贞, 刘吉华2010武汉大学学报 10 1157]

    [13]

    Rapoport L 2014 ION GNSS2014 Tampa, USA, September 8-12, 2014 p2602

    [14]

    Gao Y, Huang G Y, Zhang X H, Xu H W, Zhang L Q 2015 The 27th Chinese Control and Decision Conference Qingdao, China, May 23-25, 2015 p3627

    [15]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [16]

    Candes E J, Romberg J K, Tao T 2006 Commun. Pure and Appl. Math. 59 1207

    [17]

    Duarte M F, Baraniuk R G 2013 Appl. Comput. Harmon. Anal. 35 111

    [18]

    Foucart S, Rauhut H 2013 A Mathematical Introduction to Compressive Sensing (Vol. 1) (New York:Springer) p61

    [19]

    Leick A, Rapoport L, Tatarnikov D J 2015 GPS Satellite Surveying (Vol. 4) (New Jersey:John Wiley & Sons) p681

    [20]

    Sharma A, Paliwal K K, Imoto S, Miyano S 2013 Int. J. Mach. Learn. Cyb. 4 679

    [21]

    Kang R Z, Tian P W, Yu H Y 2014 Acta Phys. Sin. 63 200701 (in Chinese)[康荣宗, 田鹏武, 于宏毅2014物理学报 63 200701]

    [22]

    Candès E J, Romberg J, Tao T 2006 IEEE Trans. Inform. Theory 52 489

    [23]

    Candès E J 2008 Comptes Rendus Mathematique 346 589

    [24]

    Wen F Q, Zhang G, Fen D 2015 Acta Phys. Sin. 64 070201 (in Chinese)[文方青, 张弓, 贲德2015物理学报 64 070201]

    [25]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inform. Theory 53 4655

    [26]

    Ji S H, Xue Y, Carin L 2008 IEEE Trans. Signal Process. 56 2346

    [27]

    Wipf D P, Rao B D 2004 IEEE Trans. Signal Process. 52 2153

  • [1]

    Cai C S, Liu Z Z, Xia P F, Dai W J 2013 GPS Solutions 17 247

    [2]

    Parkins A 2011 GPS Solutions 15 391

    [3]

    Ji S Y, Wang Z J, Chen W, Weng D J, Xu Y, Fan S J, Huang B H, Sun G Y, Wang H Q, He Y W 2014 Survey Rev. 46 104

    [4]

    Xu G C 2007 GPS:Theory, Algorithms and Applications (Vol. 2) (Berlin:Springer Science & Business Media) p167

    [5]

    Dai Z, Knedlik S, Loffeld O 2008 Proceedings of 5th Workshop on Positioning, Navigation and Communication Hannover, Germany, March 27-27, 2008 p37

    [6]

    Dai Z 2012 GPS Solutions 16 267

    [7]

    Liu Z Z 2011 J. Geodesy. 85 171

    [8]

    Henkel P, Oku N 2015 International Association of Geodesy Symposia 142 291

    [9]

    De Lacy M C, Reguzzoni M, Sansò F 2012 GPS Solutions 16 353

    [10]

    Zhao Q L, Sun B Z, Dai Z Q, Hu Z G, Shi C, Liu J N 2015 GPS Solutions 19 381

    [11]

    Yao Y F, Gao J X, Wang J, Hu H, Li Z K 2016 Survey Rev. 48 367

    [12]

    Sun B Q, Ou J K, Sheng C Z, Liu J H 2010 Geomat. Inform. Sci. Wuhan Univ. 10 1157 (in Chinese)[孙保琪, 欧吉坤, 盛传贞, 刘吉华2010武汉大学学报 10 1157]

    [13]

    Rapoport L 2014 ION GNSS2014 Tampa, USA, September 8-12, 2014 p2602

    [14]

    Gao Y, Huang G Y, Zhang X H, Xu H W, Zhang L Q 2015 The 27th Chinese Control and Decision Conference Qingdao, China, May 23-25, 2015 p3627

    [15]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [16]

    Candes E J, Romberg J K, Tao T 2006 Commun. Pure and Appl. Math. 59 1207

    [17]

    Duarte M F, Baraniuk R G 2013 Appl. Comput. Harmon. Anal. 35 111

    [18]

    Foucart S, Rauhut H 2013 A Mathematical Introduction to Compressive Sensing (Vol. 1) (New York:Springer) p61

    [19]

    Leick A, Rapoport L, Tatarnikov D J 2015 GPS Satellite Surveying (Vol. 4) (New Jersey:John Wiley & Sons) p681

    [20]

    Sharma A, Paliwal K K, Imoto S, Miyano S 2013 Int. J. Mach. Learn. Cyb. 4 679

    [21]

    Kang R Z, Tian P W, Yu H Y 2014 Acta Phys. Sin. 63 200701 (in Chinese)[康荣宗, 田鹏武, 于宏毅2014物理学报 63 200701]

    [22]

    Candès E J, Romberg J, Tao T 2006 IEEE Trans. Inform. Theory 52 489

    [23]

    Candès E J 2008 Comptes Rendus Mathematique 346 589

    [24]

    Wen F Q, Zhang G, Fen D 2015 Acta Phys. Sin. 64 070201 (in Chinese)[文方青, 张弓, 贲德2015物理学报 64 070201]

    [25]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inform. Theory 53 4655

    [26]

    Ji S H, Xue Y, Carin L 2008 IEEE Trans. Signal Process. 56 2346

    [27]

    Wipf D P, Rao B D 2004 IEEE Trans. Signal Process. 52 2153

  • [1] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计. 物理学报, 2022, 71(5): 050101. doi: 10.7498/aps.71.20211504
    [2] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211504
    [3] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [4] 张涛, 侯宏, 鲍明. 基于稀疏重构的尾波干涉成像方法. 物理学报, 2019, 68(19): 199101. doi: 10.7498/aps.68.20190831
    [5] 董磊, 卢振武, 刘欣悦, 李正炜. 三种降采样成像策略的性能优化以及与传统傅里叶望远镜的比较. 物理学报, 2019, 68(7): 074203. doi: 10.7498/aps.68.20181801
    [6] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [7] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [8] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [9] 马璐, 刘凇佐, 乔钢. 水声正交频分多址上行通信稀疏信道估计与导频优化. 物理学报, 2015, 64(15): 154304. doi: 10.7498/aps.64.154304
    [10] 郭静波, 李佳文. 二进制信号的混沌压缩测量与重构. 物理学报, 2015, 64(19): 198401. doi: 10.7498/aps.64.198401
    [11] 柴水荣, 郭立新. 基于压缩感知的一维海面与二维舰船复合后向电磁散射快速算法研究. 物理学报, 2015, 64(6): 060301. doi: 10.7498/aps.64.060301
    [12] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法. 物理学报, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [13] 王哲, 王秉中. 压缩感知理论在矩量法中的应用. 物理学报, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [14] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [15] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [16] 马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳. 基于主成分变换的图像稀疏度估计方法. 物理学报, 2013, 62(20): 204202. doi: 10.7498/aps.62.204202
    [17] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [18] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [19] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [20] 姚畅, 陈后金, Yang Yong-Yi, 李艳凤, 韩振中, 张胜君. 基于自适应核学习相关向量机的乳腺X线图像微钙化点簇处理方法研究. 物理学报, 2013, 62(8): 088702. doi: 10.7498/aps.62.088702
计量
  • 文章访问数:  3215
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-23
  • 修回日期:  2016-08-23
  • 刊出日期:  2016-12-05

基于贝叶斯压缩感知的周跳探测与修复方法

  • 1. 哈尔滨工程大学自动化学院, 哈尔滨 150001
  • 通信作者: 李慧, lihuiheu@hotmail.com
    基金项目: 国家自然科学基金(批准号:61273081)、国家自然科学基金青年基金(批准号:61304235,61401114)、中央高校基本科研业务费专项资金(批准号:HEUCFD1431)和国家留学基金资助的课题.

摘要: 针对观测噪声对周跳探测与修复性能的影响,提出了一种新的利用贝叶斯压缩感知技术进行周跳探测与修复的方法.在历元间-站间载波相位双差观测模型的基础上,通过挖掘周跳信号的稀疏特性,获取感知矩阵,推导并建立稀疏周跳探测模型,利用稀疏贝叶斯学习中的相关向量机原理,结合周跳相关数据的先验信息,基于主动相关决策理论,进行回归估计获得周跳预测值的分布,进而实现周跳的探测与修复.实验表明,新方法在仅利用单频或双频载波相位观测量的情况下能有效探测并修复周跳,性能优于正交匹配追踪法及l1范数法.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回