搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无标度网络中基于能量的混合路由策略

杨先霞 濮存来 许忠奇 陈荣斌 吴洁鑫 李伦波

引用本文:
Citation:

无标度网络中基于能量的混合路由策略

杨先霞, 濮存来, 许忠奇, 陈荣斌, 吴洁鑫, 李伦波

Energy-based hybrid routing strategy for scale-free networks

Yang Xian-Xia, Pu Cun-Lai, Xu Zhong-Qi, Chen Rong-Bin, Wu Jie-Xin, Li Lun-Bo
PDF
导出引用
  • 针对节点能量受限的静态无标度网络,提出了一种基于能量和最短路径相结合的路由策略.该策略综合考虑邻居节点的能量水平和其到目的节点的最短路径长度,利用控制参数调节二者的权重.仿真结果表明,存在最佳的值使得网络生存时间和数据包到达数达到最大值.最后,基于提出的路由策略研究了网络结构特征与网络生存时间之间的关系.
    The infrastructures such as the internet networks, and phone networks, and their traffic capacity are well discussed in the field of network science. However, there is another type of communication infrastructure, such as the wireless sensor networks, which are usually deployed in tough environments to perform specific tasks. This kind of network usually has limited power supply, and thus the main issue is how to make good use of the energy and prolong the network lifetime. In this paper, we investigate the transport process in power-limited communication networks. We use the complex network models to generate the scale-free networks. We assign each node E0 (a constant) unit of energy and an infinite queue with the first-in-first-out rule for buffering packets. In the traffic model, every node generates packets with a constant rate . The packets' destination nodes are randomly chosen from the network. At each time step, every node delivers at most C packets. If a packet's destination node is among the neighbors of the current node, the packet will be delivered to the destination node directly and then be discarded from the destination node. Otherwise, the packet will be forwarded to a neighbor of the current node with a given routing strategy. In the delivery of a packet, the node consumes a fixed amount of energy, and will die out when it uses up its energy. We propose a hybrid routing strategy for the power-limited scale-free networks based on both the node energy and the shortest path. Specifically, in the routing strategy, we consider the residual energy of neighbor nodes and the shortest path lengths between the neighbor nodes and the destination, and utilize a free parameter to adjust their relative importance. Simulation results demonstrate that there are optimal control parameters which correspond to the maximum network lifetime and the maximum number of delivered packets. According to the proposed routing strategy, we further study the relation between the network topological structure and network lifetime. We find that the more homogeneous the network, the larger the maximum network lifetime is. Moreover, we obtain that the maximum network lifetime gradually increases with the average node degree increasing, but almost decreases linearly with the network scale increasing. In this paper we discuss the network lifetime from the perspective of network science, and give more insights into the transport process on complex networks. In addition, our work provides some clues of how to design the efficient routing strategies for the power-limited communication networks.
      通信作者: 濮存来, pucunlai@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61304154)、教育部博士点基金(批准号:20133219120032)、中国博士后基金(批准号:2013M541673)和中国博士后特别资助(批准号:2015T80556)资助的课题.
      Corresponding author: Pu Cun-Lai, pucunlai@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61304154), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20133219120032), the Postdoctoral Science Foundation of China (Grant No. 2013M541673), and the China Postdoctoral Science Special Foundation (Grant No. 2015T80556).
    [1]

    van Schewick B 2012 Internet Architecture and Innovation (Massachusetts:MIT Press) pp37-57

    [2]

    Barabási A L 2013 Phil. Trans. R. Soc. A 371 20120375

    [3]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [4]

    Barabási A L 1999 Science 286 509

    [5]

    Wang X F, Chen G 2012 Network Science:An Introduction (Beijing:Higher Education Press) pp3-26 (in Chinese)[汪小帆, 李翔, 陈关荣2012网络科学导论(北京:高等教育出版社)第3–26页]

    [6]

    Chen S, Huang W, Cattani C, Altieri G 2001 Phys. Rev. Lett. 86 3196

    [7]

    Guimerà R, Díaz-Guilera A, Vega-Redondo F, Cabrales A, Arenas A 2002 Phys. Rev. Lett. 89 248701

    [8]

    Zhao L, Lai Y C, Park K, Ye N 2005 Phys. Rev. E 71 026125

    [9]

    Liu Z, Hu M B, Jiang R, Wang W X, Wu Q S 2007 Phys. Rev. E 76 037101

    [10]

    Zhang G Q, Wang D, Li G J 2007 Phys. Rev. E 76 017101

    [11]

    Huang W, Chow T W S 2010 Chaos 20 033123

    [12]

    Yan G, Zhou T, Hu B, Fu Z Q, Wang B H 2006 Phys. Rev. E 73 046108

    [13]

    Wu Z X, Peng G, Wong W M, Yeung K H 2008 J. Stat. Mech. 2008 11002

    [14]

    Wang W X, Wang B H, Yin C Y, Xie Y B, Zhou T 2006 Phys. Rev. E 73 026111

    [15]

    Pu C L, Pei W J 2010 Acta Phys. Sin. 59 3841 (in Chinese)[濮存来, 裴文江2010物理学报 59 3841]

    [16]

    Yang H X, Tang M 2014 Physica A 402 1

    [17]

    Wang D, Jing Y, Zhang S 2008 Physica A 387 3001

    [18]

    Wang W X, Yin C Y, Yan G, Wang B H 2006 Phys. Rev. E 74 016101

    [19]

    Ling X, Hu M B, Jiang R, Wu Q S 2010 Phys. Rev. E 81 016113

    [20]

    Zhang H, Liu Z H, Tang M, Hui P M 2007 Phys. Lett. A 364 177

    [21]

    Danila B, Yu Y, Marsh J A, Bassler K E 2006 Phys. Rev. E 74 046106

    [22]

    Solé-Ribalta A, Gómez S, Arenas A 2016 Phys. Rev. Lett. 116 108701

    [23]

    Nian X, Fu H 2014 Physica A 410 421

    [24]

    Pu C, Li S, Yang X, Yang J 2016 Physica A 447 261

    [25]

    Zhou J, Yan G, Lai C H 2013 Europhys. Lett. 102 28002

    [26]

    Zhuo Y, Peng Y, Liu C, Liu Y, Long K 2011 Physica A 390 2401

    [27]

    Du W B, Zhou X L, Chen Z, Cai K Q, Cao X B 2014 Chaos Soliton. Fract. 68 72

    [28]

    Tan F, Wu J, Xia Y, Chi K T 2014 Phys. Rev. E 89 062813

    [29]

    Du W B, Zhou X L, Jusup M, Wang Z 2016 Sci. Rep. 6 19059

    [30]

    Li G Y, Xu Z K, Xiong C, Yang C, Zhang S, Chen Y, Xu S G 2011 IEEE Wireless Commun. 18 28

    [31]

    Heinzelman W R, Chandrakasan A, Balakrishnan H 2014 IEEE Trans. Ind. Inform. 10 766

    [32]

    Goh K I, Kahng B, Kim D 2001 Phys. Rev. Lett. 87 278701

    [33]

    Chen Y, Zhao Q 2005 IEEE Commun. Lett. 9 976

  • [1]

    van Schewick B 2012 Internet Architecture and Innovation (Massachusetts:MIT Press) pp37-57

    [2]

    Barabási A L 2013 Phil. Trans. R. Soc. A 371 20120375

    [3]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [4]

    Barabási A L 1999 Science 286 509

    [5]

    Wang X F, Chen G 2012 Network Science:An Introduction (Beijing:Higher Education Press) pp3-26 (in Chinese)[汪小帆, 李翔, 陈关荣2012网络科学导论(北京:高等教育出版社)第3–26页]

    [6]

    Chen S, Huang W, Cattani C, Altieri G 2001 Phys. Rev. Lett. 86 3196

    [7]

    Guimerà R, Díaz-Guilera A, Vega-Redondo F, Cabrales A, Arenas A 2002 Phys. Rev. Lett. 89 248701

    [8]

    Zhao L, Lai Y C, Park K, Ye N 2005 Phys. Rev. E 71 026125

    [9]

    Liu Z, Hu M B, Jiang R, Wang W X, Wu Q S 2007 Phys. Rev. E 76 037101

    [10]

    Zhang G Q, Wang D, Li G J 2007 Phys. Rev. E 76 017101

    [11]

    Huang W, Chow T W S 2010 Chaos 20 033123

    [12]

    Yan G, Zhou T, Hu B, Fu Z Q, Wang B H 2006 Phys. Rev. E 73 046108

    [13]

    Wu Z X, Peng G, Wong W M, Yeung K H 2008 J. Stat. Mech. 2008 11002

    [14]

    Wang W X, Wang B H, Yin C Y, Xie Y B, Zhou T 2006 Phys. Rev. E 73 026111

    [15]

    Pu C L, Pei W J 2010 Acta Phys. Sin. 59 3841 (in Chinese)[濮存来, 裴文江2010物理学报 59 3841]

    [16]

    Yang H X, Tang M 2014 Physica A 402 1

    [17]

    Wang D, Jing Y, Zhang S 2008 Physica A 387 3001

    [18]

    Wang W X, Yin C Y, Yan G, Wang B H 2006 Phys. Rev. E 74 016101

    [19]

    Ling X, Hu M B, Jiang R, Wu Q S 2010 Phys. Rev. E 81 016113

    [20]

    Zhang H, Liu Z H, Tang M, Hui P M 2007 Phys. Lett. A 364 177

    [21]

    Danila B, Yu Y, Marsh J A, Bassler K E 2006 Phys. Rev. E 74 046106

    [22]

    Solé-Ribalta A, Gómez S, Arenas A 2016 Phys. Rev. Lett. 116 108701

    [23]

    Nian X, Fu H 2014 Physica A 410 421

    [24]

    Pu C, Li S, Yang X, Yang J 2016 Physica A 447 261

    [25]

    Zhou J, Yan G, Lai C H 2013 Europhys. Lett. 102 28002

    [26]

    Zhuo Y, Peng Y, Liu C, Liu Y, Long K 2011 Physica A 390 2401

    [27]

    Du W B, Zhou X L, Chen Z, Cai K Q, Cao X B 2014 Chaos Soliton. Fract. 68 72

    [28]

    Tan F, Wu J, Xia Y, Chi K T 2014 Phys. Rev. E 89 062813

    [29]

    Du W B, Zhou X L, Jusup M, Wang Z 2016 Sci. Rep. 6 19059

    [30]

    Li G Y, Xu Z K, Xiong C, Yang C, Zhang S, Chen Y, Xu S G 2011 IEEE Wireless Commun. 18 28

    [31]

    Heinzelman W R, Chandrakasan A, Balakrishnan H 2014 IEEE Trans. Ind. Inform. 10 766

    [32]

    Goh K I, Kahng B, Kim D 2001 Phys. Rev. Lett. 87 278701

    [33]

    Chen Y, Zhao Q 2005 IEEE Commun. Lett. 9 976

  • [1] 林泓, 夏永祥, 蒋路茸. 基于最短路径长度的空间网络路由. 物理学报, 2022, 71(6): 068901. doi: 10.7498/aps.71.20211621
    [2] 胡耀光, 王圣军, 金涛, 屈世显. 度关联无标度网络上的有倾向随机行走. 物理学报, 2015, 64(2): 028901. doi: 10.7498/aps.64.028901
    [3] 郭进利. 非均齐超网络中标度律的涌现富者愈富导致幂律分布吗?. 物理学报, 2014, 63(20): 208901. doi: 10.7498/aps.63.208901
    [4] 李世宝, 娄琳琳, 陈瑞祥, 洪利. 一种复杂网络路由策略的普适优化算法. 物理学报, 2014, 63(2): 028901. doi: 10.7498/aps.63.028901
    [5] 王丹, 郝彬彬. 一类高聚类系数的加权无标度网络及其同步能力分析. 物理学报, 2013, 62(22): 220506. doi: 10.7498/aps.62.220506
    [6] 王丹, 井元伟, 郝彬彬. 加权方式对网络同步能力的影响. 物理学报, 2012, 61(17): 170513. doi: 10.7498/aps.61.170513
    [7] 王丹, 金小峥. 可调聚类系数加权无标度网络建模及其拥塞问题研究. 物理学报, 2012, 61(22): 228901. doi: 10.7498/aps.61.228901
    [8] 刘刚, 李永树. 基于引力场理论的复杂网络路由选择策略研究. 物理学报, 2012, 61(24): 248901. doi: 10.7498/aps.61.248901
    [9] 王亚奇, 蒋国平. 考虑网络流量的无标度网络病毒免疫策略研究. 物理学报, 2011, 60(6): 060202. doi: 10.7498/aps.60.060202
    [10] 濮存来, 裴文江, 缪瑞华, 周思源, 王开. 无标度网络上队列资源分配研究. 物理学报, 2010, 59(9): 6009-6013. doi: 10.7498/aps.59.6009
    [11] 赵清贵, 孔祥星, 侯振挺. 简易广义合作网络度分布的稳定性. 物理学报, 2009, 58(10): 6682-6685. doi: 10.7498/aps.58.6682
    [12] 马丽娟, 唐明, 梁小明. 在无标度网络上基于偏好聚集机理的零区域凝聚现象. 物理学报, 2009, 58(1): 83-89. doi: 10.7498/aps.58.83
    [13] 倪顺江, 翁文国, 范维澄. 具有局部结构的增长无标度网络中传染病传播机制研究. 物理学报, 2009, 58(6): 3707-3713. doi: 10.7498/aps.58.3707
    [14] 王延, 郑志刚. 无标度网络上的传播动力学. 物理学报, 2009, 58(7): 4421-4425. doi: 10.7498/aps.58.4421
    [15] 陈华良, 刘忠信, 陈增强, 袁著祉. 复杂网络的一种加权路由策略研究. 物理学报, 2009, 58(9): 6068-6073. doi: 10.7498/aps.58.6068
    [16] 裴伟东, 刘忠信, 陈增强, 袁著祉. 无标度网络中最大传染能力限定的病毒传播问题研究. 物理学报, 2008, 57(11): 6777-6785. doi: 10.7498/aps.57.6777
    [17] 郭进利. 新节点的边对网络无标度性影响. 物理学报, 2008, 57(2): 756-761. doi: 10.7498/aps.57.756
    [18] 杜海峰, 李树茁, W. F. Marcus, 悦中山, 杨绪松. 小世界网络与无标度网络的社区结构研究. 物理学报, 2007, 56(12): 6886-6893. doi: 10.7498/aps.56.6886
    [19] 李 季, 汪秉宏, 蒋品群, 周 涛, 王文旭. 节点数加速增长的复杂网络生长模型. 物理学报, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
    [20] 潘灶烽, 汪小帆. 一种可大范围调节聚类系数的加权无标度网络模型. 物理学报, 2006, 55(8): 4058-4064. doi: 10.7498/aps.55.4058
计量
  • 文章访问数:  5271
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-16
  • 修回日期:  2016-08-21
  • 刊出日期:  2016-12-05

/

返回文章
返回