-
SrTiO3(001)单晶表面上生长的单层FeSe薄膜显示出了超乎寻常的高温超导电性,其超导增强机制的一个重要因素是电子由衬底转移到了单层FeSe薄膜当中.基于此认识,研究者们在吸附了钾(K)原子的多层FeSe薄膜表面上观察到了类似超导能隙的隧穿能谱和光电子能谱.但这种自上而下的电子掺入方式在多层FeSe薄膜表面上可能引起的高温超导电性,还缺乏零电阻或迈斯纳效应等物性测量实验的直接证实.本研究利用自行研制的一台特殊的多功能扫描隧道显微镜,在生长于SrTiO3(001)衬底上的多层FeSe薄膜表面上,不但观察到了超导能隙随K吸附量的变化,而且利用原位双线圈互感测量技术,成功地的观察到了该薄膜的抗磁响应,并由此确定了该薄膜样品呈现迈斯纳效应的超导转变温度为23.9 K.其穿透深度随温度的变化呈二次幂指数关系,表明该体系的超导序参量很可能具有S±配对对称性.A single-unit-cell layer FeSe ultrathin film grown on SrTiO3(001) substrate exhibits remarkable high-temperature superconductivity, which has aroused intensive research interest. Electron transfer from the substrate to the FeSe layer has been shown to play an indispensable role in enhancing the extraordinary superconductivity. With this idea, researchers have tried to search for new high-temperature superconducting material systems including K-adsorbed multi-layer FeSe ultrathin films, on which superconducting-like energy gaps have been observed with scanning tunneling spectroscopy and photoelectron spectroscopy. However, the high-temperature superconductivity of the multi-layer FeSe ultrathin films has not yet been confirmed by directly observing the zero resistance or Meissner effect. With a self-developed multi-functional scanning tunneling microscope (STM+), which enables not only usual STM functionality, but also in situ two-coil mutual inductance measurement, we successfully observe the diamagnetic response of a K-adsorbed multilayer FeSe ultrathin film grown on a SrTiO3(001) substrate, and thus determine its transition temperature to be 23.9 K. Moreover, we calculate the penetration depth of the film from the measured results and find that its low-temperature behavior exhibits a quadratic variation, which strongly indicates that the order parameter of the superconducting K-adsorbed multi-layer FeSe ultrathin film has an S± pairing symmetry.
-
Keywords:
- multi-layer FeSe ultrathin film /
- diamagnetic response /
- Meissner effect /
- penetration depth
[1] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402
[2] Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401
[3] Zhang Z, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D, Wang Y 2015 Sci. Bull. 60 1301
[4] Sun Y, Zhang W, Xing Y, Li F, Zhao Y, Xia Z, Wang L, Ma X, Xue Q K, Wang J 2014 Sci. Rep. 4 6040
[5] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nature Mater. 14 285
[6] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262
[7] Xiang Y Y, Wang F, Wang D, Wang Q H, Lee D H 2012 Phys. Rev. B 86 134508
[8] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245
[9] Coh S, Cohen M L, Louie S G 2015 New J. Phys. 17 073027
[10] Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L, Ma X, Xue Q K, Zhao J 2016 Phys. Rev. Lett. 116 107001
[11] Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B, Feng D 2013 Nature Mater. 12 634
[12] Wang Q, Zhang W, Chen W, Xing Y, Sun Y, Wang Z, Mei J W, Wang Z, Wang L, Ma X C, Liu F, Xue Q K, Wang J 2017 2D Mater. 4 034004
[13] Cao H Y, Tan S, Xiang H, Feng D L, Gong X G 2014 Phys. Rev. B 89 014501
[14] Peng R, Shen X P, Xie X, Xu H C, Tan S Y, Xia M, Zhang T, Cao H Y, Gong X G, Hu J P, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 107001
[15] Zhang W, Li Z, Li F, Zhang H, Peng J, Tang C, Wang Q, He K, Chen X, Wang L, Ma X, Xue Q K 2014 Phys. Rev. B 89 060506
[16] He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nature Mater. 12 605
[17] Bang J, Li Z, Sun Y Y, Samanta A, Zhang Y Y, Zhang W, Wang L, Chen X, Ma X, Xue Q K, Zhang S B 2013 Phys. Rev. B 87 220503
[18] Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nature Mater. 14 775
[19] Tang C, Zhang D, Zang Y, Liu C, Zhou G, Li Z, Zheng C, Hu X, Song C, Ji S, He K, Chen X, Wang L, Ma X, Xue Q K 2015 Phys. Rev. B 92 180507
[20] Wen C H, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nature Commun. 7 10840
[21] Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L, He K, Ma X C, Xue Q K 2016 Phys. Rev. Lett. 116 157001
[22] Tang C, Liu C, Zhou G, Li F, Ding H, Li Z, Zhang D, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q K 2016 Phys. Rev. B 93 020507
[23] Zhang W H, Liu X, Wen C H, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969
[24] Zhang M L, Ge J F, Duan M C, Yao G, Liu Z L, Guan D D, Li Y Y, Qian D, Liu C H, Jia J F 2016 Acta Phys. Sin. 65 127401 (in Chinese) [张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋 2016 物理学报 65 127401]
[25] Duan M C, Liu Z L, Ge J F, Tang Z J, Wang G Y, Wang Z X, Guan D, Li Y Y, Qian D, Liu C, Jia J F 2017 Rev. Sci. Instrum. 88 073902
[26] Ge J F, Liu Z L, Gao C L, Qian D, Liu C, Jia J F 2015 Rev. Sci. Instrum 86 053903
[27] Li Z, Peng J P, Zhang H M, Zhang W H, Ding H, Deng P, Chang K, Song C L, Ji S H, Wang L, He K, Chen X, Xue Q K, Ma X C 2014 J. Phys. Condens. Matter 26 265002
[28] Hebard A F, Fiory A T 1980 Phys. Rev. Lett. 44 291
[29] Leemann C, Lerch P, Racine G, Martinoli P 1986 Phys. Rev. Lett. 56 1291
[30] Turneaure S J, Ulm E R, Lemberger T R 1996 J. Appl. Phys. 79 4221
[31] Kogan V G, Prozorov R, Mishra V 2013 Phys. Rev. B 88 224508
[32] Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Liu Y, Lograsso T A, Straszheim W E, Mishra V, Maiti S, Hirschfeld P J, Prozorov R 2016 Sci. Adv. 2 e1600807
[33] Cho K, Fente A, Teknowijoyo S, Tanatar M A, Joshi K R, Nusran N M, Kong T, Meier W R, Kaluarachchi U, Guillamón I, Suderow H, Bud’ko S L, Canfield P C, Prozorov R 2017 Phys. Rev. B 95 100502
[34] Prozorov R, Kogan V G 2011 Rep. Prog. Phys. 74 124505
[35] Du Z, Yang X, Altenfeld D, Gu Q, Yang H, Eremin I, Hirschfeld Peter J, Mazin I I, Lin H, Zhu X, Wen H H 2017 Nature Phys. 14 134
-
[1] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402
[2] Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401
[3] Zhang Z, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D, Wang Y 2015 Sci. Bull. 60 1301
[4] Sun Y, Zhang W, Xing Y, Li F, Zhao Y, Xia Z, Wang L, Ma X, Xue Q K, Wang J 2014 Sci. Rep. 4 6040
[5] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nature Mater. 14 285
[6] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262
[7] Xiang Y Y, Wang F, Wang D, Wang Q H, Lee D H 2012 Phys. Rev. B 86 134508
[8] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245
[9] Coh S, Cohen M L, Louie S G 2015 New J. Phys. 17 073027
[10] Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L, Ma X, Xue Q K, Zhao J 2016 Phys. Rev. Lett. 116 107001
[11] Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B, Feng D 2013 Nature Mater. 12 634
[12] Wang Q, Zhang W, Chen W, Xing Y, Sun Y, Wang Z, Mei J W, Wang Z, Wang L, Ma X C, Liu F, Xue Q K, Wang J 2017 2D Mater. 4 034004
[13] Cao H Y, Tan S, Xiang H, Feng D L, Gong X G 2014 Phys. Rev. B 89 014501
[14] Peng R, Shen X P, Xie X, Xu H C, Tan S Y, Xia M, Zhang T, Cao H Y, Gong X G, Hu J P, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 107001
[15] Zhang W, Li Z, Li F, Zhang H, Peng J, Tang C, Wang Q, He K, Chen X, Wang L, Ma X, Xue Q K 2014 Phys. Rev. B 89 060506
[16] He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nature Mater. 12 605
[17] Bang J, Li Z, Sun Y Y, Samanta A, Zhang Y Y, Zhang W, Wang L, Chen X, Ma X, Xue Q K, Zhang S B 2013 Phys. Rev. B 87 220503
[18] Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nature Mater. 14 775
[19] Tang C, Zhang D, Zang Y, Liu C, Zhou G, Li Z, Zheng C, Hu X, Song C, Ji S, He K, Chen X, Wang L, Ma X, Xue Q K 2015 Phys. Rev. B 92 180507
[20] Wen C H, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nature Commun. 7 10840
[21] Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L, He K, Ma X C, Xue Q K 2016 Phys. Rev. Lett. 116 157001
[22] Tang C, Liu C, Zhou G, Li F, Ding H, Li Z, Zhang D, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q K 2016 Phys. Rev. B 93 020507
[23] Zhang W H, Liu X, Wen C H, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969
[24] Zhang M L, Ge J F, Duan M C, Yao G, Liu Z L, Guan D D, Li Y Y, Qian D, Liu C H, Jia J F 2016 Acta Phys. Sin. 65 127401 (in Chinese) [张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋 2016 物理学报 65 127401]
[25] Duan M C, Liu Z L, Ge J F, Tang Z J, Wang G Y, Wang Z X, Guan D, Li Y Y, Qian D, Liu C, Jia J F 2017 Rev. Sci. Instrum. 88 073902
[26] Ge J F, Liu Z L, Gao C L, Qian D, Liu C, Jia J F 2015 Rev. Sci. Instrum 86 053903
[27] Li Z, Peng J P, Zhang H M, Zhang W H, Ding H, Deng P, Chang K, Song C L, Ji S H, Wang L, He K, Chen X, Xue Q K, Ma X C 2014 J. Phys. Condens. Matter 26 265002
[28] Hebard A F, Fiory A T 1980 Phys. Rev. Lett. 44 291
[29] Leemann C, Lerch P, Racine G, Martinoli P 1986 Phys. Rev. Lett. 56 1291
[30] Turneaure S J, Ulm E R, Lemberger T R 1996 J. Appl. Phys. 79 4221
[31] Kogan V G, Prozorov R, Mishra V 2013 Phys. Rev. B 88 224508
[32] Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Liu Y, Lograsso T A, Straszheim W E, Mishra V, Maiti S, Hirschfeld P J, Prozorov R 2016 Sci. Adv. 2 e1600807
[33] Cho K, Fente A, Teknowijoyo S, Tanatar M A, Joshi K R, Nusran N M, Kong T, Meier W R, Kaluarachchi U, Guillamón I, Suderow H, Bud’ko S L, Canfield P C, Prozorov R 2017 Phys. Rev. B 95 100502
[34] Prozorov R, Kogan V G 2011 Rep. Prog. Phys. 74 124505
[35] Du Z, Yang X, Altenfeld D, Gu Q, Yang H, Eremin I, Hirschfeld Peter J, Mazin I I, Lin H, Zhu X, Wen H H 2017 Nature Phys. 14 134
计量
- 文章访问数: 6031
- PDF下载量: 104
- 被引次数: 0