搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导薄膜磁场穿透深度的双线圈互感测量

张若舟 秦明阳 张露 尤立星 董超 沙鹏 袁洁 金魁

引用本文:
Citation:

超导薄膜磁场穿透深度的双线圈互感测量

张若舟, 秦明阳, 张露, 尤立星, 董超, 沙鹏, 袁洁, 金魁

Measurement of magnetic penetration depth in superconducting films by two-coil mutual inductance technique

Zhang Ruo-Zhou, Qin Ming-Yang, Zhang Lu, You Li-Xing, Dong Chao, Sha Peng, Yuan Jie, Jin Kui
PDF
HTML
导出引用
  • 磁场穿透深度是联系超导体宏观电动力学与微观机制的重要物理量, 其精确测量对于研究超导机理以及探索超导应用具有重要意义. 在众多的磁场穿透深度测量方法中, 双线圈互感法具有测量精度高、技术相对成熟、对样品没有破坏等优点, 可被用于细致地研究超导薄膜的磁场穿透深度对温度、掺杂、外延应力等参量的依赖关系. 本文首先简要介绍了双线圈互感法的基本原理, 指出该方法的测量精度主要受系统几何参数及薄膜边缘漏磁的影响; 之后对自主设计搭建的透射型双线圈互感装置进行了系统的校验, 并详细说明了其测量精度: 对于厚度为100 nm, 穿透深度为150 nm的典型薄膜样品, 穿透深度绝对值的测量误差小于10%; 最后通过测量NbN超导薄膜的磁场穿透深度进一步检验了装置的精度, 分析表明穿透深度的测量值与文献报道结果符合.
    The magnetic penetration depth (λ) of a superconductor is an important parameter which connects the macroscopic electrodynamics with the microscopic mechanism of superconductivity. High-accuracy measurement of λ is of great significance for revealing the pairing mechanism of superconductivity and exploring the applications of superconductors. Among various methods used to measure λ of superconducting films, the two-coil mutual inductance (MI) technique has been widely adopted due to its high precision and simplicity. In this paper, we start with introducing the principle of MI technique and pointing out that its accuracy is mainly limited by the uncertainties in the geometric parameters (e.g. the distance between two coils) and the leakage flux around the film edge. On this basis, we build a homemade transmission-type MI device with a delicate design to achieve high-accuracy. Two coils are fixed by a single-crystal sapphire block machined with high precisions to minimize the uncertainty in geometry. As a result, the reproducibility in induced voltage measured with sample remounted is better than 4%. Besides, the flux leakage around the film edge is accurately determined by measuring a thick Nb film and Nb foils. The voltage induced by leakage flux is only around 1% of that measured in the normal state. Therefore, the absolute value of λ can be accurately extracted after flux leakage subtraction and normalization. It is shown that the error of the measured λ is less than 10% for a typical superconducting film with a thickness of 100 nm and a penetration depth of 150 nm. Furthermore, the performance of our apparatus is tested on epitaxial NbN films with thickness of 6.5 nm. The results show that the low temperature variation of superfluid density is well described by the dirty s-wave BCS theory, and at temperatures close to Tc, the superfluid density decrease drastically, owing to the Berezinski-Kosterlitz-Thouless transition transition. Moreover, the zero-temperature magnetic penetration depth and the superconducting energy gap extracted from the fitting parameters are both consistent with the reported values. Our device provides an ideal platform for carrying out detailed studies of the dependence of λ on temperature, chemical composition and epitaxial strain, etc. It could also be utilized to characterize other parameters of superconductor such as the critical current density, and when combined with the ionic liquid gating technique, our device offers an efficient route for revealing the microscopic mechanism of superconductivity.
      通信作者: 金魁, kuijin@iphy.ac.cn
    • 基金项目: 中科院-中国科学院战略性先导科技专项(B类)(XDB25000000)
      Corresponding author: Jin Kui, kuijin@iphy.ac.cn
    [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    London F, London H 1935 Proc. R. Soc. A 149 71Google Scholar

    [3]

    Prozorov R, Giannetta R W 2006 Supercond. Sci. Technol. 19 R41Google Scholar

    [4]

    Prozorov R, Kogan V G 2011 Rep. Prog. Phys. 74 124505Google Scholar

    [5]

    Hardy W N, Bonn D A, Morgan D C, Liang R, Zhang K 1993 Phys. Rev. Lett. 70 3999Google Scholar

    [6]

    Skinta J A, Kim M S, Lemberger T R, Greibe T, Naito M 2002 Phys. Rev. Lett. 88 207005Google Scholar

    [7]

    Fletcher J D, Carrington A, Taylor O J, Kazakov S M, Karpinski J 2005 Phys. Rev. Lett. 95 097005Google Scholar

    [8]

    Emery V J, Kivelson S A 1995 Nature 374 434Google Scholar

    [9]

    Božović I, He X, Wu J, Bollinger A T 2016 Nature 536 309Google Scholar

    [10]

    Homes C C, Dordevic S V, Strongin M, Bonn D A, Liang R, Hardy W N, Komiya S, Ando Y, Yu G, Kaneko N, Zhao X, Greven M, Basov D N, Timusk T 2004 Nature 430 539Google Scholar

    [11]

    Uemura Y J, Luke G M, Sternlieb B J, Brewer J H, Carolan J F, Hardy W N, Kadono R, Kempton J R, Kiefl R F, Kreitzman S R, Mulhern P, Riseman T M, Williams D L, Yang B X, Uchida S, Takagi H, Gopalakrishnan J, Sleight A W, Subramanian M A, Chien C L, Cieplak M Z, Xiao G, Lee V Y, Statt B W, Stronach C E, Kossler W J, Yu X H 1989 Phys. Rev. Lett. 62 2317Google Scholar

    [12]

    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R, Matsuda Y 2012 Science 336 1554Google Scholar

    [13]

    Joshi K R, Nusran N M, Tanatar M A, Cho K, Bud’ko S L, Canfield P C, Fernandes R M, Levchenko A, Prozorov R 2019 arXiv: 1903.00053 [cond-mat.supr-con]

    [14]

    Wang C G, Li Z, Yang J, Xing L Y, Dai G Y, Wang X C, Jin C Q, Zhou R, Zheng G Q 2018 Phys. Rev. Lett. 121 167004Google Scholar

    [15]

    Sonier J E, Brewer J H, Kiefl R F 2000 Rev. Mod. Phys. 72 769Google Scholar

    [16]

    Hashimoto K, Shibauchi T, Kasahara S, Ikada K, Tonegawa S, Kato T, Okazaki R, van der Beek C J, Konczykowski M, Takeya H, Hirata K, Terashima T, Matsuda Y 2009 Phys. Rev. Lett. 102 207001Google Scholar

    [17]

    Hashimoto K, Shibauchi T, Kato T, Ikada K, Okazaki R, Shishido H, Ishikado M, Kito H, Iyo A, Eisaki H, Shamoto S, Matsuda Y 2009 Phys. Rev. Lett. 102 017002Google Scholar

    [18]

    Pang G, Smidman M, Zhang J, Jiao L, Weng Z, Nica E M, Chen Y, Jiang W, Zhang Y, Xie W, Jeevan H S, Lee H, Gegenwart P, Steglich F, Si Q, Yuan H 2018 Proc. Natl. Acad. Sci. U.S.A. 115 5343Google Scholar

    [19]

    Van Degrift C T 1975 Rev. Sci. Instrum. 46 599Google Scholar

    [20]

    Weng Z F, Zhang J L, Smidman M, Shang T, Quintanilla J, Annett J F, Nicklas M, Pang G M, Jiao L, Jiang W B, Chen Y, Steglich F, Yuan H Q 2016 Phys. Rev. Lett. 117 027001Google Scholar

    [21]

    Okazaki R, Konczykowski M, van der Beek C J, Kato T, Hashimoto K, Shimozawa M, Shishido H, Yamashita M, Ishikado M, Kito H, Iyo A, Eisaki H, Shamoto S, Shibauchi T, Matsuda Y 2009 Phys. Rev. B 79 064520Google Scholar

    [22]

    Ren C, Wang Z S, Luo H Q, Yang H, Shan L, Wen H H 2008 Phys. Rev. Lett. 101 257006Google Scholar

    [23]

    Tafuri F, Kirtley J R, Medaglia P G, Orgiani P, Balestrino G 2004 Phys. Rev. Lett. 92 157006Google Scholar

    [24]

    Luan L, Lippman T M, Hicks C W, Bert J A, Auslaender O M, Chu J H, Analytis J G, Fisher I R, Moler K A 2011 Phys. Rev. Lett. 106 067001Google Scholar

    [25]

    Hebard A F, Fiory A T 1980 Phys. Rev. Lett. 44 291Google Scholar

    [26]

    Jeanneret B, Gavilano J L, Racine G A, Leemann C, Martinoli P 1989 Appl. Phys. Lett. 55 2336Google Scholar

    [27]

    Kinney J, Garcia-Barriocanal J, Goldman A M 2015 Phys. Rev. B 92 100505Google Scholar

    [28]

    Claassen J H, Wilson M L, Byers J M, Adrian S 1997 J. Appl. Phys. 82 3028Google Scholar

    [29]

    Turneaure S J, Pesetski A A, Lemberger T R 1998 J. Appl. Phys. 83 4334Google Scholar

    [30]

    Turneaure S J, Ulm E R, Lemberger T R 1996 J. Appl. Phys. 79 4221Google Scholar

    [31]

    Fiory A T, Hebard A F, Mankiewich P M, Howard R E 1988 Appl. Phys. Lett. 52 2165Google Scholar

    [32]

    He X, Gozar A, Sundling R, Božović I 2016 Rev. Sci. Instrum. 87 113903Google Scholar

    [33]

    Dubuis G, He X, Božović I 2014 Rev. Sci. Instrum. 85 103902Google Scholar

    [34]

    Clem J R, Coffey M W 1992 Phys. Rev. B 46 14662Google Scholar

    [35]

    Lee J Y, Kim Y H, Hahn T S, Choi S S 1996 Appl. Phys. Lett. 69 1637Google Scholar

    [36]

    Duan M C, Liu Z L, Ge J F, Tang Z J, Wang G Y, Wang Z X, Guan D, Li Y Y, Qian D, Liu C, Jia J F 2017 Rev. Sci. Instrum. 88 073902Google Scholar

    [37]

    丁世英 2009 物理学进展 29 239Google Scholar

    Ding S Y 2009 Progress in Physics 29 239Google Scholar

    [38]

    Kamlapure A, Mondal M, Chand M, Mishra A, Jesudasan J, Bagwe V, Benfatto L, Tripathi V, Raychaudhuri P 2010 Appl. Phys. Lett. 96 072509Google Scholar

    [39]

    Tinkham M 1996 Introduction to Superconductivity (2 nd Ed.) (New York: McGraw-Hill) p103

    [40]

    Kosterlitz J M, Thouless D J 1972 J. Phys. C: Solid. State. Phys. 5 L124Google Scholar

    [41]

    Nelson D R, Kosterlitz J M 1977 Phys. Rev. Lett. 39 1201Google Scholar

    [42]

    Qin M Y, Zhang R Z, Feng Z P, Lin Z F, Wei X J, Alvarez S B, Dong C, Silhanek A V, Zhu B Y, Yuan J, Qin Q, Jin K 2020 J. Supercond. Novel Magn. 33 159Google Scholar

    [43]

    Draskovic J, Lemberger T R, Peters B, Yang F, Ku J, Bezryadin A, Wang S 2013 Phys. Rev. B 88 134516Google Scholar

    [44]

    Lemberger T R, Ahmed A 2013 Phys. Rev. B 87 214505Google Scholar

    [45]

    Claassen J H, Reeves M E, Soulen R J 1991 Rev. Sci. Instrum. 62 996

    [46]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [47]

    Logvenov G, Gozar A, Bozovic I 2009 Science 326 699Google Scholar

    [48]

    Nam H, Su P H, Shih C K 2018 Rev. Sci. Instrum. 89 043901Google Scholar

    [49]

    Zuev Y, Lemberger T R, Skinta J A, Greibe T, Naito M 2003 Phys. Status Solidi B 236 412Google Scholar

    [50]

    Cui Y T, Moore R G, Zhang A M, Tian Y, Lee J J, Schmitt F T, Zhang W H, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Wang L L, Ma X C, Zhang Q M, Xue Q K, Lee D H, Shen Z X 2015 Phys. Rev. Lett. 114 037002Google Scholar

    [51]

    Rout P K, Budhani R C 2010 Phys. Rev. B 82 024518Google Scholar

    [52]

    Kumar S, Kumar C, Jesudasan J, Bagwe V, Raychaudhuri P, Bose S 2013 Appl. Phys. Lett. 103 262601Google Scholar

  • 图 1  (a)双线圈互感装置示意图; (b)等效电路图

    Fig. 1.  Schematic illustration (a) and equivalent circuit (b) of the two-coil mutual inductance apparatus.

    图 2  (a) d = 100 nm, λ = 150 nm的超导薄膜的互感系数随薄膜半径R的变化曲线; (b)基于不同的线圈间距(h = 0.9, 4.5, 9.0 mm) 得到的穿透深度计算值随薄膜半径R的变化曲线, 虚线代表实际穿透深度λ = 150 nm

    Fig. 2.  (a) The mutual inductance as a function of film radii R calculated for the typical superconducting film with d = 100 nm, λ = 150 nm; (b) calculations of penetration depth λcal vs film radii R for different spacings between two coils (h = 0.9, 4.5, 9.0 mm). The real penetration depth (λ = 150 nm) is indicated by the dotted line.

    图 3  (a)两次测量同一片铌膜得到的感生电压Vx, 1(T)及Vx, 2(T); (b)铌膜的感生电压V(T = 4.5 K)随频率的依赖关系

    Fig. 3.  (a) The induced voltage data Vx, 1(T) and Vx, 2(T) taken from the same Nb film with sample remounted; (b) the frequency dependence of induced voltage V(T = 4.5 K) for the Nb film.

    图 4  NbN薄膜(NbN#1, NbN#2, NbN#3, NbN#4)的双线圈互感测量结果 (a) NbN#1样品的感生电压曲线Vx(T)及Vy(T); (b)四个样品的穿透深度随温度变化曲线λ(T); (c) NbN#1样品的超流密度-温度曲线${{\rm{\lambda }}^{ - 2}}\left( T \right) \propto {n_{\rm{s}}}\left( T \right)$, 黑色实线是脏极限BCS理论的拟合结果; (d)四块样品的穿透深度零温外延值λ (T → 0)与Tc的关系, 符合文献报道趋势[38], 误差棒的长度小于数据点的标记尺寸

    Fig. 4.  Two-coil mutual inductance measurement results of NbN films (NbN#1, NbN#2, NbN#3, NbN#4): (a) Temperature dependence of induced voltage Vx(T) and Vy(T) for NbN#1; (b) temperature-dependent penetration depth λ(T) of four NbN films; (c) temperature variation in superfluid density ${{\rm{\lambda }}^{ - 2}}\left( T \right) \propto {n_{\rm{s}}}\left( T \right)$ for NbN#1. The black line shows the dirty s-wave BCS theory fit to the data; (d) the value of λ (T → 0) for four NbN films, which shows a good agreement with the published value[38]. The length of error bar is shorter than the symbol size.

  • [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    London F, London H 1935 Proc. R. Soc. A 149 71Google Scholar

    [3]

    Prozorov R, Giannetta R W 2006 Supercond. Sci. Technol. 19 R41Google Scholar

    [4]

    Prozorov R, Kogan V G 2011 Rep. Prog. Phys. 74 124505Google Scholar

    [5]

    Hardy W N, Bonn D A, Morgan D C, Liang R, Zhang K 1993 Phys. Rev. Lett. 70 3999Google Scholar

    [6]

    Skinta J A, Kim M S, Lemberger T R, Greibe T, Naito M 2002 Phys. Rev. Lett. 88 207005Google Scholar

    [7]

    Fletcher J D, Carrington A, Taylor O J, Kazakov S M, Karpinski J 2005 Phys. Rev. Lett. 95 097005Google Scholar

    [8]

    Emery V J, Kivelson S A 1995 Nature 374 434Google Scholar

    [9]

    Božović I, He X, Wu J, Bollinger A T 2016 Nature 536 309Google Scholar

    [10]

    Homes C C, Dordevic S V, Strongin M, Bonn D A, Liang R, Hardy W N, Komiya S, Ando Y, Yu G, Kaneko N, Zhao X, Greven M, Basov D N, Timusk T 2004 Nature 430 539Google Scholar

    [11]

    Uemura Y J, Luke G M, Sternlieb B J, Brewer J H, Carolan J F, Hardy W N, Kadono R, Kempton J R, Kiefl R F, Kreitzman S R, Mulhern P, Riseman T M, Williams D L, Yang B X, Uchida S, Takagi H, Gopalakrishnan J, Sleight A W, Subramanian M A, Chien C L, Cieplak M Z, Xiao G, Lee V Y, Statt B W, Stronach C E, Kossler W J, Yu X H 1989 Phys. Rev. Lett. 62 2317Google Scholar

    [12]

    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R, Matsuda Y 2012 Science 336 1554Google Scholar

    [13]

    Joshi K R, Nusran N M, Tanatar M A, Cho K, Bud’ko S L, Canfield P C, Fernandes R M, Levchenko A, Prozorov R 2019 arXiv: 1903.00053 [cond-mat.supr-con]

    [14]

    Wang C G, Li Z, Yang J, Xing L Y, Dai G Y, Wang X C, Jin C Q, Zhou R, Zheng G Q 2018 Phys. Rev. Lett. 121 167004Google Scholar

    [15]

    Sonier J E, Brewer J H, Kiefl R F 2000 Rev. Mod. Phys. 72 769Google Scholar

    [16]

    Hashimoto K, Shibauchi T, Kasahara S, Ikada K, Tonegawa S, Kato T, Okazaki R, van der Beek C J, Konczykowski M, Takeya H, Hirata K, Terashima T, Matsuda Y 2009 Phys. Rev. Lett. 102 207001Google Scholar

    [17]

    Hashimoto K, Shibauchi T, Kato T, Ikada K, Okazaki R, Shishido H, Ishikado M, Kito H, Iyo A, Eisaki H, Shamoto S, Matsuda Y 2009 Phys. Rev. Lett. 102 017002Google Scholar

    [18]

    Pang G, Smidman M, Zhang J, Jiao L, Weng Z, Nica E M, Chen Y, Jiang W, Zhang Y, Xie W, Jeevan H S, Lee H, Gegenwart P, Steglich F, Si Q, Yuan H 2018 Proc. Natl. Acad. Sci. U.S.A. 115 5343Google Scholar

    [19]

    Van Degrift C T 1975 Rev. Sci. Instrum. 46 599Google Scholar

    [20]

    Weng Z F, Zhang J L, Smidman M, Shang T, Quintanilla J, Annett J F, Nicklas M, Pang G M, Jiao L, Jiang W B, Chen Y, Steglich F, Yuan H Q 2016 Phys. Rev. Lett. 117 027001Google Scholar

    [21]

    Okazaki R, Konczykowski M, van der Beek C J, Kato T, Hashimoto K, Shimozawa M, Shishido H, Yamashita M, Ishikado M, Kito H, Iyo A, Eisaki H, Shamoto S, Shibauchi T, Matsuda Y 2009 Phys. Rev. B 79 064520Google Scholar

    [22]

    Ren C, Wang Z S, Luo H Q, Yang H, Shan L, Wen H H 2008 Phys. Rev. Lett. 101 257006Google Scholar

    [23]

    Tafuri F, Kirtley J R, Medaglia P G, Orgiani P, Balestrino G 2004 Phys. Rev. Lett. 92 157006Google Scholar

    [24]

    Luan L, Lippman T M, Hicks C W, Bert J A, Auslaender O M, Chu J H, Analytis J G, Fisher I R, Moler K A 2011 Phys. Rev. Lett. 106 067001Google Scholar

    [25]

    Hebard A F, Fiory A T 1980 Phys. Rev. Lett. 44 291Google Scholar

    [26]

    Jeanneret B, Gavilano J L, Racine G A, Leemann C, Martinoli P 1989 Appl. Phys. Lett. 55 2336Google Scholar

    [27]

    Kinney J, Garcia-Barriocanal J, Goldman A M 2015 Phys. Rev. B 92 100505Google Scholar

    [28]

    Claassen J H, Wilson M L, Byers J M, Adrian S 1997 J. Appl. Phys. 82 3028Google Scholar

    [29]

    Turneaure S J, Pesetski A A, Lemberger T R 1998 J. Appl. Phys. 83 4334Google Scholar

    [30]

    Turneaure S J, Ulm E R, Lemberger T R 1996 J. Appl. Phys. 79 4221Google Scholar

    [31]

    Fiory A T, Hebard A F, Mankiewich P M, Howard R E 1988 Appl. Phys. Lett. 52 2165Google Scholar

    [32]

    He X, Gozar A, Sundling R, Božović I 2016 Rev. Sci. Instrum. 87 113903Google Scholar

    [33]

    Dubuis G, He X, Božović I 2014 Rev. Sci. Instrum. 85 103902Google Scholar

    [34]

    Clem J R, Coffey M W 1992 Phys. Rev. B 46 14662Google Scholar

    [35]

    Lee J Y, Kim Y H, Hahn T S, Choi S S 1996 Appl. Phys. Lett. 69 1637Google Scholar

    [36]

    Duan M C, Liu Z L, Ge J F, Tang Z J, Wang G Y, Wang Z X, Guan D, Li Y Y, Qian D, Liu C, Jia J F 2017 Rev. Sci. Instrum. 88 073902Google Scholar

    [37]

    丁世英 2009 物理学进展 29 239Google Scholar

    Ding S Y 2009 Progress in Physics 29 239Google Scholar

    [38]

    Kamlapure A, Mondal M, Chand M, Mishra A, Jesudasan J, Bagwe V, Benfatto L, Tripathi V, Raychaudhuri P 2010 Appl. Phys. Lett. 96 072509Google Scholar

    [39]

    Tinkham M 1996 Introduction to Superconductivity (2 nd Ed.) (New York: McGraw-Hill) p103

    [40]

    Kosterlitz J M, Thouless D J 1972 J. Phys. C: Solid. State. Phys. 5 L124Google Scholar

    [41]

    Nelson D R, Kosterlitz J M 1977 Phys. Rev. Lett. 39 1201Google Scholar

    [42]

    Qin M Y, Zhang R Z, Feng Z P, Lin Z F, Wei X J, Alvarez S B, Dong C, Silhanek A V, Zhu B Y, Yuan J, Qin Q, Jin K 2020 J. Supercond. Novel Magn. 33 159Google Scholar

    [43]

    Draskovic J, Lemberger T R, Peters B, Yang F, Ku J, Bezryadin A, Wang S 2013 Phys. Rev. B 88 134516Google Scholar

    [44]

    Lemberger T R, Ahmed A 2013 Phys. Rev. B 87 214505Google Scholar

    [45]

    Claassen J H, Reeves M E, Soulen R J 1991 Rev. Sci. Instrum. 62 996

    [46]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [47]

    Logvenov G, Gozar A, Bozovic I 2009 Science 326 699Google Scholar

    [48]

    Nam H, Su P H, Shih C K 2018 Rev. Sci. Instrum. 89 043901Google Scholar

    [49]

    Zuev Y, Lemberger T R, Skinta J A, Greibe T, Naito M 2003 Phys. Status Solidi B 236 412Google Scholar

    [50]

    Cui Y T, Moore R G, Zhang A M, Tian Y, Lee J J, Schmitt F T, Zhang W H, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Wang L L, Ma X C, Zhang Q M, Xue Q K, Lee D H, Shen Z X 2015 Phys. Rev. Lett. 114 037002Google Scholar

    [51]

    Rout P K, Budhani R C 2010 Phys. Rev. B 82 024518Google Scholar

    [52]

    Kumar S, Kumar C, Jesudasan J, Bagwe V, Raychaudhuri P, Bose S 2013 Appl. Phys. Lett. 103 262601Google Scholar

  • [1] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240171
    [2] 娄月申, 郭文军. 贝叶斯深度神经网络对于核质量预测的研究. 物理学报, 2022, 71(10): 102101. doi: 10.7498/aps.71.20212387
    [3] 韩波, 梁雅琼. 质子成像法测量电容线圈靶磁场. 物理学报, 2020, 69(17): 175202. doi: 10.7498/aps.69.20200215
    [4] 吴小宇, 赵虎, 李智. 基于超导电路的奥特-汤恩斯分裂效应. 物理学报, 2020, 69(23): 230302. doi: 10.7498/aps.69.20200796
    [5] 丁发柱, 张京业, 谭运飞, 陈治友, 董泽斌, 张慧亮, 商红静, 许文娟, 张贺, 屈飞, 高召顺, 周微微, 古宏伟. 国产MOCVD-YBCO带材高温超导线圈研制与磁场温度特性研究. 物理学报, 2018, 67(6): 068401. doi: 10.7498/aps.67.20171491
    [6] 陈传廷, 姚钢, 段明超, 管丹丹, 李耀义, 郑浩, 王世勇, 刘灿华, 贾金锋. 表面吸附K原子的多层FeSe/SrTiO3(001)薄膜的抗磁响应的原位测量. 物理学报, 2018, 67(22): 227401. doi: 10.7498/aps.67.20181522
    [7] 杨卓群, 吴亚波, 鲁军旺, 张成园, 张雪. Lifshitz时空s波超导模型的关联长度和穿透深度. 物理学报, 2016, 65(4): 040401. doi: 10.7498/aps.65.040401
    [8] 韩云, 钟圣伦, 叶正圣, 陈启军. 基于视角无关转换的深度摄像机定位技术. 物理学报, 2014, 63(7): 074211. doi: 10.7498/aps.63.074211
    [9] 李兰凯, 王厚生, 倪志鹏, 程军胜, 王秋良. 超导线圈绕制过程的力学行为研究. 物理学报, 2013, 62(5): 058403. doi: 10.7498/aps.62.058403
    [10] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [11] 郭志超, 索红莉. 超导线的表面区域处理提高其磁场下的输运能力. 物理学报, 2012, 61(23): 237106. doi: 10.7498/aps.61.237106
    [12] 喻利花, 董师润, 许俊华, 李戈扬. TaN/TiN和NbN/TiN纳米结构多层膜超硬效应及超硬机理研究. 物理学报, 2008, 57(11): 7063-7068. doi: 10.7498/aps.57.7063
    [13] 张权义, 吴耀宇, 彭 政, 刘 锐, 陆坤权, 厚美瑛. 重力驱动下运动物体在颗粒介质中的最大穿透深度. 物理学报, 2006, 55(12): 6203-6207. doi: 10.7498/aps.55.6203
    [14] 王瑞峰. A-B效应的动力学机制及其实验验证方案. 物理学报, 2005, 54(10): 4532-4537. doi: 10.7498/aps.54.4532
    [15] 王瑞峰, 赵士平, 徐凤枝, 陈赓华, 杨乾声. 超导体磁场穿透深度测量中的数据分析问题. 物理学报, 2002, 51(4): 889-893. doi: 10.7498/aps.51.889
    [16] 刘公强, Chen S.Tsai. 斜向静磁场中的薄膜磁光效应和静磁波传播特性. 物理学报, 1998, 47(6): 997-1005. doi: 10.7498/aps.47.997
    [17] 吴杭生. 合金薄膜的临界磁场. 物理学报, 1965, 21(1): 132-139. doi: 10.7498/aps.21.132
    [18] 雷啸霖. 磁场中的超导膜. 物理学报, 1965, 21(9): 1619-1637. doi: 10.7498/aps.21.1619
    [19] 吴杭生, 雷啸霖. 在强磁场中金属薄膜的超导电理论(Ⅰ). 物理学报, 1964, 20(9): 873-889. doi: 10.7498/aps.20.873
    [20] 雷啸霖, 吴杭生. 在强磁场中金属薄膜的超导电理论(Ⅱ)——超导薄膜的临界磁场. 物理学报, 1964, 20(10): 991-1002. doi: 10.7498/aps.20.991
计量
  • 文章访问数:  10610
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-17
  • 修回日期:  2019-12-10
  • 刊出日期:  2020-02-20

/

返回文章
返回