搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lifshitz时空s波超导模型的关联长度和穿透深度

杨卓群 吴亚波 鲁军旺 张成园 张雪

引用本文:
Citation:

Lifshitz时空s波超导模型的关联长度和穿透深度

杨卓群, 吴亚波, 鲁军旺, 张成园, 张雪

Coherence length and magnetic penetration depth of the s-wave holographic superconductor model in Lifshitz spacetime

Yang Zhuo-Qun, Wu Ya-Bo, Lu Jun-Wang, Zhang Cheng-Yuan, Zhang Xue
PDF
导出引用
  • 在D=d+2维各向异性的Lifshitz黑洞时空背景中, 在探子极限下, 用解析方法研究了临界温度附近引力系统的微扰, 计算出超导的关联长度(1/Tc)(1-(T/Tc)-1/2, 这与平均场论的结果一致. 进一步, 考虑在该系统中加一个均匀外磁场, 计算出穿透深度(Tc-T)-1/2, 该结果与Ginzburg-Landau理论相符.
    The AdS/CFT duality provides us a powerful guidance to study the strong-coupled conformal field theory by using its dual weak-coupled gravity. One of the interesting applications of the duality is to study high temperature superconductors, which are supposed to be a strongly coupled system. According to Ginzburg-Landau theory, a superconductor can be characterized by only two parameters, coherence length and the magnetic penetration length ; therefore, it is important to determine the two parameters. In this paper in the D=d+2-dimensional Lifshitz black hole, we analytically study the static fluctuation of the scalar field with nonzero spatial momentum along one spatial coordinate of the boundary, and investigate the perturbation of the gravitational system near the critical temperature Tc. Working in the probe limit (the gauge field and scalar field do not backreact on the original metric), we obtain the superconducting coherence length via AdS/CFT (anti-de Sitter/conformal field theory) correspondence, which is (1/Tc)(1-(T/Tc)-1/2. Moreover, in the probe limit (the magnetic field does not backreact to the background spacetime), we have calculated the diamagnetic current induced by a homogeneous external magnetic field perpendicular to the surface of the superconductor. Then, we obtain the magnetic penetration depth (Tc-T)-1/2, which agrees with the result in Ginzburg-Landau theory. And these results strongly support the idea that a superconductor can be described by a charged scalar field on the Lifshitz black hole via AdS/CFT (anti-de Sitter/conformal field theory) duality.
      通信作者: 吴亚波, ybwu61@163.com
    • 基金项目: 国家自然科学基金(批准号: 11175077, 11575075)资助的课题.
      Corresponding author: Wu Ya-Bo, ybwu61@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175077, 11575075).
    [1]

    Bekenstein J D 1973 Phys. Rev. D 7 2333

    [2]

    Hawking S W 1975 Commun. Math. Phys. 43 199

    [3]

    Hooft G T 1993 arXiv:gr-qc/9310026

    [4]

    Susskind L 1995 J. Math. Phys. 36 6377

    [5]

    Maldacena J M 1999 Int. J. Theor. Phys. 38 1113

    [6]

    Witten E 1998 Adv. Theor. Math. Phys. 2 253

    [7]

    Gubser S S, Klebanov I R, Polyakov A M 1998 Phys. Lett. B 428 105

    [8]

    Hartnoll S A, Herzog C P, Horowitz G T 2008 Phys. Rev. Lett. 101 031601

    [9]

    Maeda K, Okamura T 2008 Phys. Rev. D 78 106006

    [10]

    Gubser S S, Pufu S S 2008 J. High Energy Phys. 11 033

    [11]

    Cai R G, Li L, Li L F 2014 J. High Energy Phys. 01 032

    [12]

    Chen J W, Kao Y J, Maity D, Wen W Y, Yeh C P 2010 Phys. Rev. D 81 106008

    [13]

    Cai R G, He S, Li L, Li L F 2013 J. High Energy Phys. 12 036

    [14]

    Nie Z Y, Cai R G, Gao X, Zeng H 2013 J. High Energy Phys. 11 087

    [15]

    Horowitz G T, Roberts M M 2008 Phys. Rev. D 78 126008

    [16]

    Cai R G, Li L F, Wang Y Q 2013 J. High Energy Phys. 09 074

    [17]

    Cai R G, Nie Z Y and Zhang H Q 2010 Phys. Rev. D 82 066007

    [18]

    Ling Y, Niu C, Wu J P, Xian Z Y, Zhang H B 2014 Phys. Rev. Lett. 113 091602

    [19]

    Zeng X X, Liu X M, Liu W B 2014 J. High Energy Phys. 03 031

    [20]

    Wu Y B, Lu J W, Zhang C Y, Zhang N, Zhang X, Yang Z Q, Wu S Y 2015 Phys. Lett. B 741 138

    [21]

    Wu Y B, Lu J W, Liu M L, Lu J B, Zhang C Y, Yang Z Q 2014 Phys. Rev. D 89 106006

    [22]

    Nakonieczny L, Rogatko M 2014 Phys. Rev. D 90 106004

    [23]

    Nakonieczny L, Rogatko M, Wysokinski K 2015 Phys. Rev. D 92 066008

    [24]

    Franco S, Garcia-Garcia A M, Rodriguez-Gomez D 2010 J. High Energy Phys. 04 092

    [25]

    Rogatko M, Wysokinski K 2015 arXiv:1510.06137[hep-th]

    [26]

    Chen S B, Pan Q Y, JIng J L 2012 Chin. Phys. B 21 040403

    [27]

    Peng Y, Deng F A, Liu G H, Yang K F 2015 Acta Phys. Sin. 64 157401 (in Chinese) [彭严, 邓方安, 刘国华, 杨凯凡 2015 物理学报 64 157401]

    [28]

    Kachru S, Liu X, Mulligan M 2008 Phys. Rev. D 78 106005

    [29]

    Lu J W, Wu Y B, Qian P, Zhao Y Y, Zhang X, Zhang N 2014 Nucl. Phys. B 887 112

    [30]

    Taylor M 2008 arXiv:0812.0530[hep-th]

    [31]

    Pang D W 2014 Commun. Theor. Phys. 62 265

  • [1]

    Bekenstein J D 1973 Phys. Rev. D 7 2333

    [2]

    Hawking S W 1975 Commun. Math. Phys. 43 199

    [3]

    Hooft G T 1993 arXiv:gr-qc/9310026

    [4]

    Susskind L 1995 J. Math. Phys. 36 6377

    [5]

    Maldacena J M 1999 Int. J. Theor. Phys. 38 1113

    [6]

    Witten E 1998 Adv. Theor. Math. Phys. 2 253

    [7]

    Gubser S S, Klebanov I R, Polyakov A M 1998 Phys. Lett. B 428 105

    [8]

    Hartnoll S A, Herzog C P, Horowitz G T 2008 Phys. Rev. Lett. 101 031601

    [9]

    Maeda K, Okamura T 2008 Phys. Rev. D 78 106006

    [10]

    Gubser S S, Pufu S S 2008 J. High Energy Phys. 11 033

    [11]

    Cai R G, Li L, Li L F 2014 J. High Energy Phys. 01 032

    [12]

    Chen J W, Kao Y J, Maity D, Wen W Y, Yeh C P 2010 Phys. Rev. D 81 106008

    [13]

    Cai R G, He S, Li L, Li L F 2013 J. High Energy Phys. 12 036

    [14]

    Nie Z Y, Cai R G, Gao X, Zeng H 2013 J. High Energy Phys. 11 087

    [15]

    Horowitz G T, Roberts M M 2008 Phys. Rev. D 78 126008

    [16]

    Cai R G, Li L F, Wang Y Q 2013 J. High Energy Phys. 09 074

    [17]

    Cai R G, Nie Z Y and Zhang H Q 2010 Phys. Rev. D 82 066007

    [18]

    Ling Y, Niu C, Wu J P, Xian Z Y, Zhang H B 2014 Phys. Rev. Lett. 113 091602

    [19]

    Zeng X X, Liu X M, Liu W B 2014 J. High Energy Phys. 03 031

    [20]

    Wu Y B, Lu J W, Zhang C Y, Zhang N, Zhang X, Yang Z Q, Wu S Y 2015 Phys. Lett. B 741 138

    [21]

    Wu Y B, Lu J W, Liu M L, Lu J B, Zhang C Y, Yang Z Q 2014 Phys. Rev. D 89 106006

    [22]

    Nakonieczny L, Rogatko M 2014 Phys. Rev. D 90 106004

    [23]

    Nakonieczny L, Rogatko M, Wysokinski K 2015 Phys. Rev. D 92 066008

    [24]

    Franco S, Garcia-Garcia A M, Rodriguez-Gomez D 2010 J. High Energy Phys. 04 092

    [25]

    Rogatko M, Wysokinski K 2015 arXiv:1510.06137[hep-th]

    [26]

    Chen S B, Pan Q Y, JIng J L 2012 Chin. Phys. B 21 040403

    [27]

    Peng Y, Deng F A, Liu G H, Yang K F 2015 Acta Phys. Sin. 64 157401 (in Chinese) [彭严, 邓方安, 刘国华, 杨凯凡 2015 物理学报 64 157401]

    [28]

    Kachru S, Liu X, Mulligan M 2008 Phys. Rev. D 78 106005

    [29]

    Lu J W, Wu Y B, Qian P, Zhao Y Y, Zhang X, Zhang N 2014 Nucl. Phys. B 887 112

    [30]

    Taylor M 2008 arXiv:0812.0530[hep-th]

    [31]

    Pang D W 2014 Commun. Theor. Phys. 62 265

  • [1] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [2] 王垚, 姜璐, 周又和, 薛存. 超导薄膜磁-热不稳定与强非线性电磁本构的关联性. 物理学报, 2022, 71(20): 207401. doi: 10.7498/aps.71.20220285
    [3] 张若舟, 秦明阳, 张露, 尤立星, 董超, 沙鹏, 袁洁, 金魁. 超导薄膜磁场穿透深度的双线圈互感测量. 物理学报, 2020, 69(4): 047401. doi: 10.7498/aps.69.20191758
    [4] 潮兴兵, 潘鲁平, 王子圣, 杨锋涛, 丁剑平. 图像传感器像素化效应对菲涅耳非相干关联全息分辨率的影响. 物理学报, 2019, 68(6): 064203. doi: 10.7498/aps.68.20181844
    [5] 徐海超, 牛晓海, 叶子荣, 封东来. 铁基超导体系基于电子关联强度的统一相图. 物理学报, 2018, 67(20): 207405. doi: 10.7498/aps.67.20181541
    [6] 陈传廷, 姚钢, 段明超, 管丹丹, 李耀义, 郑浩, 王世勇, 刘灿华, 贾金锋. 表面吸附K原子的多层FeSe/SrTiO3(001)薄膜的抗磁响应的原位测量. 物理学报, 2018, 67(22): 227401. doi: 10.7498/aps.67.20181522
    [7] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择. 物理学报, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [8] 彭严, 邓方安, 刘国华, 杨凯凡. 一类新的Stckelberg全息超导模型. 物理学报, 2015, 64(15): 157401. doi: 10.7498/aps.64.157401
    [9] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [10] 卢小可, 郭茂田, 苏建坡, 弓巧侠, 武进科, 刘建立, 陈明, 马凤英. 太赫兹波段介质微腔光学特性研究. 物理学报, 2013, 62(8): 084208. doi: 10.7498/aps.62.084208
    [11] 侯威, 章大全, 杨萍, 杨杰. 去趋势波动分析方法中不重叠等长度子区间长度的确定. 物理学报, 2010, 59(12): 8986-8993. doi: 10.7498/aps.59.8986
    [12] 谢志堃, 余国祥, 刘成周. Gibbons-Maeda dilaton黑洞的全息熵. 物理学报, 2010, 59(6): 4390-4394. doi: 10.7498/aps.59.4390
    [13] 赵 仁, 张丽春, 张胜利. 正则黑洞熵. 物理学报, 2007, 56(7): 3719-3722. doi: 10.7498/aps.56.3719
    [14] 赵 仁, 张丽春, 胡双启. 黑洞的统计熵. 物理学报, 2006, 55(8): 3902-3905. doi: 10.7498/aps.55.3902
    [15] 张权义, 吴耀宇, 彭 政, 刘 锐, 陆坤权, 厚美瑛. 重力驱动下运动物体在颗粒介质中的最大穿透深度. 物理学报, 2006, 55(12): 6203-6207. doi: 10.7498/aps.55.6203
    [16] 王淑芳, B. B. Jin, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 程波林, 杨国桢. MgB2超导薄膜的微波测量. 物理学报, 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [17] 王瑞峰, 赵士平, 徐凤枝, 陈赓华, 杨乾声. 超导体磁场穿透深度测量中的数据分析问题. 物理学报, 2002, 51(4): 889-893. doi: 10.7498/aps.51.889
    [18] 夏健生, 曹烈兆, 徐成, 王顺喜, 陈健, 陈祖耀, 张其瑞. (Bi,Pb)4Ca3Sr3Cu4Oy系统的超导电性与相结构的关联. 物理学报, 1989, 38(6): 1026-1029. doi: 10.7498/aps.38.1026
    [19] 赵勇, 张酣, 孙式方, 孙敦明, 喻道奇, 余维潮, 陈祖耀, 张其瑞. YBa2-xSrxCu3O7-δ系统的超导电性与结构的关联. 物理学报, 1988, 37(6): 1042-1047. doi: 10.7498/aps.37.1042
    [20] 沈觉涟. 二级相变理论和Lifshitz条件不成立的论证. 物理学报, 1978, 27(1): 63-84. doi: 10.7498/aps.27.63
计量
  • 文章访问数:  6589
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-15
  • 修回日期:  2015-11-30
  • 刊出日期:  2016-02-05

/

返回文章
返回