搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用多角度海底反向散射信号进行地声参数估计

周天 李海森 朱建军 魏玉阔

引用本文:
Citation:

利用多角度海底反向散射信号进行地声参数估计

周天, 李海森, 朱建军, 魏玉阔

A geoacoustic estimation scheme based on bottom backscatter signals from multiple angles

Zhou Tian, Li Hai-Sen, Zhu Jian-Jun, Wei Yu-Kuo
PDF
导出引用
  • 针对现有海底地声参数估计方法的不足,提出了利用相控参量阵浅地层剖面仪接收的多角度海底反向散射信号进行地声参数估计的方法. 首先利用正下方和斜入射方向上沉积层上、下表面的差频反向散射信号进行沉积层厚度和声速估计,然后利用正下方沉积层上、下表面两个不同频率的差频信号的反向散射信号估计沉积层衰减系数,最后利用正下方沉积层上表面原频反向散射信号估计沉积层阻抗,计算沉积层密度从而解决和声速的耦合性. 通过水池试验验证了该方法的有效性.
    Aiming at the disadvantages of current methods to estimate sediment geoacoustic parameters, a geoacoustic estimation scheme is presented, in which used are the bottom back reflection signals from multiple angles sampled with a multi-beam parametric array sub-bottom profiler. Firstly, the sediment thickness and sound speed are estimated with difference frequency backscatter signals separately from upper and lower sediment surfaces with vertical and outboard direction. Then, the sediment attenuation coefficient is estimated by use of the two backscatter signals with different difference frequencies from upper and lower sediment surfaces with vertical direction. Finally, the sediment property impedance is estimated with primary frequency backscatter signals from upper sediment surface with vertical direction and followed by the computation of the sediment density, thereby solving its coupling with sound speed. The efficiency is tested through pool experiment.
    • 基金项目: 国家自然科学基金(批准号:41006057,41376103,41327004,41306182)和中央高校基本科研业务费(批准号:HEUCF130501)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41006057, 41376103, 41327004, 41306182) and the Fundamental Research Fund for the Central Universities, China (Grant No. HEUCF130501).
    [1]

    Grelowska G, Kozaczka E, Kozaczka S, Szymczak W 2012 11th European Conference on Underwater Acoustics Edinburgh, UK, July 2-6, 2012 p1446

    [2]

    Yang K D, Chapman N R, Ma Y L 2007 J. Acoust. Soc. Am. 121 833

    [3]

    Dettmer J, Dosso S E 2012 J. Acoust. Soc. Am. 132 2239

    [4]

    Tan B A, Gerstoft P, Yardim C, Hodgkiss S 2013 J. Acoust. Soc. Am. 134 312

    [5]

    Neumann P, Muncill G 2004 IEEE J. Oceanic Eng. 29 13

    [6]

    Dettmer J, Dosso S E, Holland C W 2007 J. Acoust. Soc. Am. 122 161

    [7]

    Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471

    [8]

    Yang K D, Ma Y L 2009 Acta Phys. Sin. 58 1798 (in Chinese) [杨坤德, 马远良 2009 物理学报 58 1798]

    [9]

    Jiang Y M, Chapman N R 2010 IEEE J. Oceanic Eng. 35 59

    [10]

    Schock S G 2004 IEEE J. Oceanic Eng. 29 1200

    [11]

    Siemes K, Snellen M, Amiri-Simkooei A R, Simons D G, Hermand J P 2010 IEEE J. Oceanic Eng. 35 766

    [12]

    Hefner B T, Jackson D R, Williams K L, Thorsos E I 2009 IEEE J. Oceanic Eng. 34 372

    [13]

    Ohta K, Okabe K, Morishita I, Frisk G V, Turgut A 2009 IEEE J. Oceanic Eng. 43 526

    [14]

    Theuillon G, Stéphan Y, Pacault A 2008 IEEE J. Oceanic Eng. 33 240

    [15]

    Liu B S, Lei J Y 1993 Principles of Underwater Acoustics (Harbin: Harbin Engineering University Press) 77 (in Chinese) [刘伯胜, 雷家煜 1993 水声学原理 (哈尔滨: 哈尔滨工程大学出版社) 第77页]

    [16]

    Innomar 2009 Technologie GmbH SES2000 User’s Guide (V 2.8) 2009 181

  • [1]

    Grelowska G, Kozaczka E, Kozaczka S, Szymczak W 2012 11th European Conference on Underwater Acoustics Edinburgh, UK, July 2-6, 2012 p1446

    [2]

    Yang K D, Chapman N R, Ma Y L 2007 J. Acoust. Soc. Am. 121 833

    [3]

    Dettmer J, Dosso S E 2012 J. Acoust. Soc. Am. 132 2239

    [4]

    Tan B A, Gerstoft P, Yardim C, Hodgkiss S 2013 J. Acoust. Soc. Am. 134 312

    [5]

    Neumann P, Muncill G 2004 IEEE J. Oceanic Eng. 29 13

    [6]

    Dettmer J, Dosso S E, Holland C W 2007 J. Acoust. Soc. Am. 122 161

    [7]

    Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471

    [8]

    Yang K D, Ma Y L 2009 Acta Phys. Sin. 58 1798 (in Chinese) [杨坤德, 马远良 2009 物理学报 58 1798]

    [9]

    Jiang Y M, Chapman N R 2010 IEEE J. Oceanic Eng. 35 59

    [10]

    Schock S G 2004 IEEE J. Oceanic Eng. 29 1200

    [11]

    Siemes K, Snellen M, Amiri-Simkooei A R, Simons D G, Hermand J P 2010 IEEE J. Oceanic Eng. 35 766

    [12]

    Hefner B T, Jackson D R, Williams K L, Thorsos E I 2009 IEEE J. Oceanic Eng. 34 372

    [13]

    Ohta K, Okabe K, Morishita I, Frisk G V, Turgut A 2009 IEEE J. Oceanic Eng. 43 526

    [14]

    Theuillon G, Stéphan Y, Pacault A 2008 IEEE J. Oceanic Eng. 33 240

    [15]

    Liu B S, Lei J Y 1993 Principles of Underwater Acoustics (Harbin: Harbin Engineering University Press) 77 (in Chinese) [刘伯胜, 雷家煜 1993 水声学原理 (哈尔滨: 哈尔滨工程大学出版社) 第77页]

    [16]

    Innomar 2009 Technologie GmbH SES2000 User’s Guide (V 2.8) 2009 181

计量
  • 文章访问数:  1940
  • PDF下载量:  597
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-22
  • 修回日期:  2013-12-12
  • 刊出日期:  2014-04-05

利用多角度海底反向散射信号进行地声参数估计

  • 1. 哈尔滨工程大学水声工程学院, 水声技术重点实验室, 哈尔滨 150001
    基金项目: 

    国家自然科学基金(批准号:41006057,41376103,41327004,41306182)和中央高校基本科研业务费(批准号:HEUCF130501)资助的课题.

摘要: 针对现有海底地声参数估计方法的不足,提出了利用相控参量阵浅地层剖面仪接收的多角度海底反向散射信号进行地声参数估计的方法. 首先利用正下方和斜入射方向上沉积层上、下表面的差频反向散射信号进行沉积层厚度和声速估计,然后利用正下方沉积层上、下表面两个不同频率的差频信号的反向散射信号估计沉积层衰减系数,最后利用正下方沉积层上表面原频反向散射信号估计沉积层阻抗,计算沉积层密度从而解决和声速的耦合性. 通过水池试验验证了该方法的有效性.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回