搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多角度复合的超声多普勒矢量血流成像

王康宇 周昱林 何丽媛 卢春尧 于润 吴大伟

引用本文:
Citation:

多角度复合的超声多普勒矢量血流成像

王康宇, 周昱林, 何丽媛, 卢春尧, 于润, 吴大伟

Blood flow image by multi-angle composite ultrasonic Doppler vector

Wang Kang-Yu, Zhou Yu-Lin, He Li-Yuan, Lu Chun-Yao, Yu Run, Wu Da-Wei
PDF
HTML
导出引用
  • 血流速度的精确测量对于研究心血管疾病和动脉粥样硬化斑块的形成至关重要, 传统的彩色多普勒方法局限于获得沿超声束的速度分量, 难以描绘复杂的血流运动. 本文提出了一种多角度复合的超声多普勒方法, 结合多角度复合技术来提升速度估算的准确度. 该方法可以获取复杂血管内较为精确的二维速度矢量, 实现血管内动态矢量血流成像. 仿真结果表明, 多角度复合有效地减小了速度估算的误差, 提升图像的质量. 颈动脉分叉仿体成像实验表明, 该方法可以获得较为清楚的血管内速度矢量图像. 定量分析结果表明5个角度复合方案能够准确估算血管内流量. 本文提出的多角度复合的矢量多普勒具有可视化复杂血流和计算血流动力学参数的能力, 在矢量血流成像方法中有重要潜力.
    Precise measurement of blood flow is of vital importance in studying the formation of thrombus and atherosclerotic plaque. However, conventional color Doppler methods are limited to obtaining the velocity component along the ultrasound beam and have poor accuracy. Several Doppler flow imaging methods based on the plane wave emission can estimate the blood velocity vectors and visualize hemodynamic parameters, which provide more detailed blood flow information and effectively improve the capability of clinical diagnosis treatment. Considering the low accuracy of the Doppler flow methods for measuring velocity in complex flow fields, an optimization technique is used to improve the imaging quality and the accuracy of velocity estimation. In this study we propose a modified vector Doppler method through combining multi-angle compound technique, to reconstruct blood velocity vectors of carotid bifurcations obtained from 3D printing. Since the multi-angle compound technology can effectively improve the quality of imaging, this technology is applied to Doppler imaging to achieve high-accuracy velocity estimation. It can significantly reduce the velocity estimation errors. Comparing the velocity estimation accuracy of different angle compound numbers (n = 1, 3, 5, and 7) in the simulation, it is found that the accuracy of velocity estimation increases with angle compound increasing. Beside, the 5-angle compound method is more robust for velocity estimation and can obtain higher frames. The experiments were carried out using a programmable ultrasonic array system and a high-frequency linear array transducer L12-5c with a central frequency of 8.125 MHz. The sample rate is set to be 31.25 MHz. The imaging results of carotid bifurcation also show that the vector Doppler based on 5-angle compound can obtain a clear image of intravascular vector flow, which is beneficial to the identifying of complex flow state, and realize intravascular dynamic imaging. Especially, it can capture the vortex phenomenon in the blood stream. The quantitative results indicate that this method significantly reduces the error between the flow calculation results and the reference results, making the estimation results more accurate. In conclusion, the vector Doppler method based on multi-angle compound has the good performance of visualizing complex blood flow and calculating hemodynamic parameters. It also provides the reference for the diagnosis of cardiovascular disease and the research of flow imaging methods.
      通信作者: 吴大伟, dwu@nuaa.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFE0109300)和南京航空航天大学研究生创新基地(实验室)开放基金项目(批准号: kfjj20200101)资助的课题
      Corresponding author: Wu Da-Wei, dwu@nuaa.edu.cn
    • Funds: Project supported by the National Key Research and Development Project (Grant No. 2019YFE0109300), and the Fundamental Research Funds for the Central Universities , China (Grant No. kfjj20200101)
    [1]

    Stein J H, Korcarz C E, Hurst R T, Lonn E, Kendall C B, Mohler E R, Najjar S S, Rembold C M and Post W S 2008 J. Am. Soc. Echocardiogr. 21 93Google Scholar

    [2]

    Kornblum H I, Araujo D M, Annala A J, Tatsukawa K J, Phelps M E, Cherry S R 2000 Nat. Biotechnol. 18 655Google Scholar

    [3]

    Ogawa S, Lee T M, Kay A R, Tank D W 1990 Proc. Natl. Acad. Sci. U. S. A. 87 9868Google Scholar

    [4]

    Denarie B, Tangen T A, Ekroll I K, Rolim N, Torp H, Bjastad T, Lovstakken L 2013 IEEE Trans. Med. Imaging 32 1265Google Scholar

    [5]

    Cloutier G, Zhao Q, Durand L G, Teh B G 1996 IEEE Trans. Biomed. Eng. 43 441Google Scholar

    [6]

    Tanter M, Bercoff J, Sandrin L, Fink M 2002 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49 1363Google Scholar

    [7]

    Mace E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M 2011 Nat. Methods 8 662Google Scholar

    [8]

    臧佳琦, 许凯亮, 韩清见, 陆起涌, 梅永丰, 他得安 2020 物理学报 70 114303Google Scholar

    Zang J Q, Xu K L, Han Q J, Lu Q Y, Mei Y F, Ta D A 2020 Acta. Phys. Sin 70 114303Google Scholar

    [9]

    Fredriksen T D, Avdal J, Ekroll IK, Dahl T, Løvstakken L, Torp H 2014 IEEE Trans. Ultrason. Ferroelect. Freq. Control 61 1161Google Scholar

    [10]

    Tortoli P, Dallai A, Boni E, Francalanci L, Ricci S 2010 Ultrasound Med. Biol. 36 488Google Scholar

    [11]

    Jensen J, Hoyos C A V, Stuart M B, Ewertsen C, Nielsen M B, Jensen J A 2017 IEEE Trans. Ultrason. Ferroelect. Freq. Control 64 1050Google Scholar

    [12]

    Behar V, Adanm D, Friedman Z 2003 Ultrasonics 41 377Google Scholar

    [13]

    Lovstakken L, Torp H 2010 IEEE International Ultrasonics Symposium San Diego, CA, USA, Oct 11–14, 2010 p1198

    [14]

    Wan M X, Gong X Z, Qian M 1999 IEEE Trans. Biomed. Eng. 46 1074Google Scholar

    [15]

    Steel R, Fish P J 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Control 49 1375Google Scholar

    [16]

    Girault J M, Kouame D, Ouahabi A 2000 Ultrasonics 38 682Google Scholar

    [17]

    Peronneau P, Bournat J P, Bugnon A, Barbet A, Xhaard M 1974 Cardiovascular Applications of Ultrasound Netherlands, North Holland, 1974 p66

    [18]

    Tortoli P, Bambi G, Ricci S 2006 IEEE Trans. Ultrason. Ferroelect. Freq. Control 53 1425Google Scholar

    [19]

    Dunmire B, Beach K W, Labs K H, Plett M, Strandness D E 2000 Ultrasound Med. Biol. 26 1213Google Scholar

    [20]

    Phillips P J, Kadi A P, Von Ramm O T 1995 Ultrasound Med. Biol. 21 217Google Scholar

    [21]

    Scabia M, Calzolai M, Capineri L, Masotti L, Fort A 2000 Ultrasound Med. Biol. 26 121Google Scholar

    [22]

    Tsang I K H, Yiu B Y S, Yu A C H 2009 IEEE International Ultrasonics Symposium Rome, Italy, Sept 20–23, 2009 p1387

    [23]

    Ricci S, Ramalli A, Bassi L, Boni E, Tortoli P 2017 IEEE Trans. Ultrason. Ferroelect. Freq. Control 65 201Google Scholar

    [24]

    Bjaerum S, Torp H, and Kristoffersen K, 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Control 49 204Google Scholar

    [25]

    Revellin R, Rousset F, Baud D, Bonjour J 2009 Theor. Biol. Med. Modell. 6 1Google Scholar

  • 图 1  方法流程图

    Fig. 1.  Flow chart of the proposed method.

    图 2  (a)平面波传输示意图; (b)无偏转角的平面波传输路径; (c)偏转角为$ \alpha $时声波传输的路径

    Fig. 2.  (a) Plane wave transmission; (b) time delays for a plane wave emission and reception; (c) time delays for a plane wave of the angle $ \alpha $.

    图 3  交叉波速示意图.

    Fig. 3.  Schematic diagram of crossed-beam vector Doppler.

    图 4  实验系统原理图

    Fig. 4.  Schematic diagram of the experimental system.

    图 5  颈动脉分叉实验装置图

    Fig. 5.  Experimental setup of carotid bifurcation.

    图 6  多角度复合多普勒成像结果 (a) 单角度复合; (b) 3个角度复合; (c) 5个角度复合; (d) 7个角度复合

    Fig. 6.  Multi-angle compound Doppler imaging results: (a) Single angle compound; (b) 3 angles compound; (c) 5 angles compound; (d) 7 angles compound.

    图 7  多角度复合多普勒估算速度与标准参考值的散点分布图 (a)单角度; (b) 3个角度复合; (c) 5个角度复合; (d) 7个角度复合

    Fig. 7.  Scatter plots showing the relation between reference and estimated velocities: (a) Single angle; (b) 3 angles compound; (c) 5 angles compound; (d) 7 angles compound.

    图 8  血管沿深度方向的速度分布曲线.

    Fig. 8.  Velocity distribution along the depth direction of the blood vessel.

    图 9  单角度平面波发射的颈动脉分叉血流成像结果 (a)偏转接收角度为12°时三种流量入口条件的彩色多普勒图像; (b)偏转接收角度为–12°的彩色多普勒图像; (c)矢量合成得到的速度矢量图像; (d)分叉处放大图

    Fig. 9.  Blood flow imaging of carotid bifurcation by single angle plane wave composite imaging: (a) Color Doppler imaging of three flow inlet conditions at 12° deflection receiving angle; (b) color Doppler imaging with a deflected reception angle of –12°; (c) the dual-mode imaging of velocity vector and B mode; (d) Enlarged view of partial bifurcation.

    图 10  单角度平面波成像和5个角度复合的颈动脉分叉成像结果对比 (a), (b)和(c)分别为单角度平面波发射情况下流量为200, 250和300 mL/min的血流矢量成像结果; (e), (f)和(d)为5个角度复合的成像结果. 白色线框表示用于估算平均速度的区域

    Fig. 10.  Blood flow imaging of carotid bifurcation by single plane wave and 5-angle plane wave compound: (a), (b), (c) The imaging results of 200, 250 and 300 mL/min under the condition of single plane wave emission; (e), (f), (d) the imaging results of 5-angle composite. The white box represents the area used to estimate the average speed.

    表 1  声场仿真的参数设置

    Table 1.  Simulation parameters setting.

    参数
    发射阵元数128
    接收阵元数128
    中心频率/MHz5
    阵元宽度/mm0.208
    阵元高度/mm4.5
    阵元间距/mm0.35
    声速/(m·s–1)1540
    幅度变迹Hanning
    激励脉冲4-period sinusoid
    最大脉冲重复频率/kHz15
    角度复合数3, 5, 7
    采样频率/MHz100
    直径/mm10
    峰值速度/(m·s–1)1
    下载: 导出CSV

    表 2  多普勒速度估算的标准偏差

    Table 2.  Standard deviation of Doppler velocity estimation.

    $ {N}_{\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}\mathrm{s}} $1357
    归一化标准差0.1640.0730.0670.0659
    下载: 导出CSV

    表 3  矢量多普勒方法计算流量与设定值的误差

    Table 3.  The error between the estimated flow rate and the reference value.

    $ {V}_{\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{e}} $/(mL·min–1)200250300
    Error($ {N}_{\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}\mathrm{s}} $ = 1)0.1250.2080.107
    Error($ {N}_{\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}\mathrm{s}} $ = 5)0.1200.0800.053
    下载: 导出CSV
  • [1]

    Stein J H, Korcarz C E, Hurst R T, Lonn E, Kendall C B, Mohler E R, Najjar S S, Rembold C M and Post W S 2008 J. Am. Soc. Echocardiogr. 21 93Google Scholar

    [2]

    Kornblum H I, Araujo D M, Annala A J, Tatsukawa K J, Phelps M E, Cherry S R 2000 Nat. Biotechnol. 18 655Google Scholar

    [3]

    Ogawa S, Lee T M, Kay A R, Tank D W 1990 Proc. Natl. Acad. Sci. U. S. A. 87 9868Google Scholar

    [4]

    Denarie B, Tangen T A, Ekroll I K, Rolim N, Torp H, Bjastad T, Lovstakken L 2013 IEEE Trans. Med. Imaging 32 1265Google Scholar

    [5]

    Cloutier G, Zhao Q, Durand L G, Teh B G 1996 IEEE Trans. Biomed. Eng. 43 441Google Scholar

    [6]

    Tanter M, Bercoff J, Sandrin L, Fink M 2002 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49 1363Google Scholar

    [7]

    Mace E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M 2011 Nat. Methods 8 662Google Scholar

    [8]

    臧佳琦, 许凯亮, 韩清见, 陆起涌, 梅永丰, 他得安 2020 物理学报 70 114303Google Scholar

    Zang J Q, Xu K L, Han Q J, Lu Q Y, Mei Y F, Ta D A 2020 Acta. Phys. Sin 70 114303Google Scholar

    [9]

    Fredriksen T D, Avdal J, Ekroll IK, Dahl T, Løvstakken L, Torp H 2014 IEEE Trans. Ultrason. Ferroelect. Freq. Control 61 1161Google Scholar

    [10]

    Tortoli P, Dallai A, Boni E, Francalanci L, Ricci S 2010 Ultrasound Med. Biol. 36 488Google Scholar

    [11]

    Jensen J, Hoyos C A V, Stuart M B, Ewertsen C, Nielsen M B, Jensen J A 2017 IEEE Trans. Ultrason. Ferroelect. Freq. Control 64 1050Google Scholar

    [12]

    Behar V, Adanm D, Friedman Z 2003 Ultrasonics 41 377Google Scholar

    [13]

    Lovstakken L, Torp H 2010 IEEE International Ultrasonics Symposium San Diego, CA, USA, Oct 11–14, 2010 p1198

    [14]

    Wan M X, Gong X Z, Qian M 1999 IEEE Trans. Biomed. Eng. 46 1074Google Scholar

    [15]

    Steel R, Fish P J 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Control 49 1375Google Scholar

    [16]

    Girault J M, Kouame D, Ouahabi A 2000 Ultrasonics 38 682Google Scholar

    [17]

    Peronneau P, Bournat J P, Bugnon A, Barbet A, Xhaard M 1974 Cardiovascular Applications of Ultrasound Netherlands, North Holland, 1974 p66

    [18]

    Tortoli P, Bambi G, Ricci S 2006 IEEE Trans. Ultrason. Ferroelect. Freq. Control 53 1425Google Scholar

    [19]

    Dunmire B, Beach K W, Labs K H, Plett M, Strandness D E 2000 Ultrasound Med. Biol. 26 1213Google Scholar

    [20]

    Phillips P J, Kadi A P, Von Ramm O T 1995 Ultrasound Med. Biol. 21 217Google Scholar

    [21]

    Scabia M, Calzolai M, Capineri L, Masotti L, Fort A 2000 Ultrasound Med. Biol. 26 121Google Scholar

    [22]

    Tsang I K H, Yiu B Y S, Yu A C H 2009 IEEE International Ultrasonics Symposium Rome, Italy, Sept 20–23, 2009 p1387

    [23]

    Ricci S, Ramalli A, Bassi L, Boni E, Tortoli P 2017 IEEE Trans. Ultrason. Ferroelect. Freq. Control 65 201Google Scholar

    [24]

    Bjaerum S, Torp H, and Kristoffersen K, 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Control 49 204Google Scholar

    [25]

    Revellin R, Rousset F, Baud D, Bonjour J 2009 Theor. Biol. Med. Modell. 6 1Google Scholar

  • [1] 闫少渊, 丁逸鸣, 马国奡, 付亚鹏, 许凯亮, 他得安. 超快超声编码矢量多普勒流速与血流阻抗成像方法. 物理学报, 2025, 74(1): 014302. doi: 10.7498/aps.74.20241454
    [2] 刘淑倩, 张海燕, 张辉, 朱文发, 陈祎婷, 刘雅洁. 融合环形统计矢量的复合材料褶皱缺陷超声相位迁移成像. 物理学报, 2024, 73(17): 174301. doi: 10.7498/aps.73.20240714
    [3] 李海宁, 禹利达, 甘仁杰, 张伟斌, 杨占锋. 颗粒填充复合炸药裂纹缺陷的高信噪比超声成像方法. 物理学报, 2023, 72(15): 154301. doi: 10.7498/aps.72.20230522
    [4] 付亚鹏, 孙乾东, 李博艺, 他得安, 许凯亮. 基于RCA阵列三维超快超声血流成像方法仿真研究. 物理学报, 2023, 72(7): 074302. doi: 10.7498/aps.72.20222106
    [5] 张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬. 碳纤维增强复合材料褶皱缺陷的超声成像. 物理学报, 2021, 70(11): 114301. doi: 10.7498/aps.70.20210032
    [6] 王传位, 李宁, 黄孝龙, 翁春生. 基于多角度投影激光吸收光谱技术的两段式速度分布流场测试方法. 物理学报, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [7] 郑逢勋, 侯伟真, 李正强. 高分五号卫星多角度偏振相机最优化估计反演: 角度依赖与后验误差分析. 物理学报, 2019, 68(4): 040701. doi: 10.7498/aps.68.20181682
    [8] 钱鸿鹄, 孟炳寰, 袁银麟, 洪津, 张苗苗, 李双, 裘桢炜. 星载多角度偏振成像仪非偏通道全视场偏振效应测量及误差分析. 物理学报, 2017, 66(10): 100701. doi: 10.7498/aps.66.100701
    [9] 许松林, 朱东. 脂肪颗粒在颈动脉中的运动及其对血液动力学的影响. 物理学报, 2015, 64(20): 208701. doi: 10.7498/aps.64.208701
    [10] 相坤生, 程天海, 顾行发, 郭红, 陈好, 王颖, 魏曦, 包方闻. 基于多角度偏振载荷数据的中国典型地物偏振特性研究. 物理学报, 2015, 64(22): 227801. doi: 10.7498/aps.64.227801
    [11] 周天, 李海森, 朱建军, 魏玉阔. 利用多角度海底反向散射信号进行地声参数估计. 物理学报, 2014, 63(8): 084302. doi: 10.7498/aps.63.084302
    [12] 王大勇, 王云新, 郭莎, 戎路, 张亦卓. 基于多角度无透镜傅里叶变换数字全息的散斑噪声抑制成像研究. 物理学报, 2014, 63(15): 154205. doi: 10.7498/aps.63.154205
    [13] 刘国忠, 周哲海, 邱钧, 王晓飞, 刘桂礼, 王瑞康. 幅值和相位配准技术及其在光学相干层析血流成像中的应用. 物理学报, 2013, 62(15): 158702. doi: 10.7498/aps.62.158702
    [14] 于文英, 安里千. 锥柱复合目标激光距离多普勒像分析模型. 物理学报, 2012, 61(21): 218703. doi: 10.7498/aps.61.218703
    [15] 黄良敏, 丁志华, 洪威, 王川. 相关多普勒光学层析成像. 物理学报, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [16] 谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭婧. 基于多角度偏振相机的城市典型地物双向反射特性研究. 物理学报, 2012, 61(7): 077801. doi: 10.7498/aps.61.077801
    [17] 彭京思, 彭虎. 一种适用于超声多普勒血流速度测量的混沌调频连续波的研究. 物理学报, 2012, 61(24): 248701. doi: 10.7498/aps.61.248701
    [18] 顾行发, 陈兴峰, 程天海, 李正强, 余涛, 谢东海, 许华. 多角度偏振遥感相机DPC在轨偏振定标. 物理学报, 2011, 60(7): 070702. doi: 10.7498/aps.60.070702
    [19] 程天海, 顾行发, 陈良富, 余 涛, 田国良. 卷云多角度偏振特性研究. 物理学报, 2008, 57(8): 5323-5332. doi: 10.7498/aps.57.5323
    [20] 朱为勇, 王耀俊, 宁伟. 纤维复合媒质中的超声衰减. 物理学报, 1996, 45(1): 58-64. doi: 10.7498/aps.45.58
计量
  • 文章访问数:  6994
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2022-01-26
  • 上网日期:  2022-02-15
  • 刊出日期:  2022-05-20

/

返回文章
返回