-
血流速度的动态精确测量对血管疾病诊疗至关重要.传统超声彩色多普勒技术只能获取血流速度在声波传播方向的分量,无法获取准确的血流速度大小和方向.近期发展的超快矢量多普勒技术可用于小血流速度矢量测量,然而其测量精度对噪声较为敏感.本文提出了一种基于哈达玛矩阵的超快超声脉冲编码矢量多普勒流速测量方法.螺旋血流仿真实验和大鼠脑血流在体实验表明,与现有方法相比,所提出方法显著提升了低信噪比情况下的血流速度测量准确度.此外,本文实现了脑血流在单个心动周期内的速度矢量动态测量,并实现了脑血流网络阻抗特征分析,具有较高的成像信噪比和高时空分辨率.本文提出的超快脉冲编码矢量多普勒成像方法,可应用于复杂血流网络可视化和血流动力学参数动态评估,对发展基于超快超声的血流矢量化成像方法具有重要借鉴意义。Dynamic and precise measurement of cerebral blood flow velocity plays a critical role in neuroscience and the diagnosis of cerebrovascular diseases. Traditional color Doppler ultrasound can only measure the velocity component along the ultrasound beam, limiting its ability to accurately capture the full blood flow vector in complex environments. To address these limitations, we propose an ultrafast pulse-coded vector Doppler (PC-UVD) imaging method, leveraging Hadamard matrix pulse encoding to enhance velocity estimation accuracy in low signal-to-noise ratio (SNR) conditions. Our study includes both spiral flow simulations and in vivo rat brain experiments, demonstrating significant improvements in measurement precision compared to conventional ultrafast vector Doppler (UVD). This novel approach enables dynamic cerebral blood flow velocity measurement within a single cardiac cycle, offering insights into cerebrovascular resistivity characteristics.
The proposed PC-UVD method encodes plane waves with Hadamard matrices, increasing SNR without sacrificing temporal or spatial resolution. Velocity vectors are then estimated using a weighted least squares (WLS) approach, where iterative residual-based weight optimization enhances robustness to noise and reduces outlier contributions. Simulations using a spiral blood flow phantom validate the effectiveness of this technique, showing a substantial improvement in velocity estimation accuracy, particularly in deep imaging regions with significant signal attenuation. In vivo experiments on rat brains further corroborate the enhanced accuracy of the proposed method over existing UVD approaches, particularly for small vessels. Notably, our approach can accurately differentiate arterial and venous flows by analyzing pulsatility and resistivity within the cerebral vascular network.
This work demonstrates the potential of PC-UVD in complex vascular imaging, providing high SNR, high temporal and spatial resolution, and accurate vectorized flow measurements. Our results highlight its capability for non-invasive assessment of hemodynamic parameters and its potential application in the diagnosis of cerebrovascular diseases, particularly in small vessels.-
Keywords:
- Vector Doppler imaging /
- Blood flow velocity /
- Flow resistivity /
- Ultrafast ultrasound /
- Pulse code
-
[1] Bandera E, Botteri M, Minelli C, Sutton A, Abrams K R, Latronico N 2006 Stroke 37 1334
[2] Geurts L J, Zwanenburg J J M, Klijn C J M, Luijten P R, Biessels G J 2018 Stroke STROKEAHA118022516
[3] Logothetis N K 2008 Nature 453 869
[4] Salmela M B, Mortazavi S, Jagadeesan B D, Broderick D F, Burns J, Deshmukh T K, Harvey H B, Hoang J, Hunt C H, Kennedy T A, Khalessi A A, Mack W, Patel N D, Perlmutter J S, Policeni B, Schroeder J W, Setzen G, Whitehead M T, Cornelius R S, Corey A S 2017 J. Am. Coll. Radiol. 14 S34
[5] Poelma C 2017 Exp. Fluids 58 1
[6] Poelma C, van der Mijle R M E, Mari J M, Tang M X, Weinberg P D, Westerweel J 2012 Eur. J. Mech. B Fluids 35 70
[7] Omoto R, Kasai C 1986 Echocardiography 3 463
[8] Kripfgans O D, Rubin J M, Hall A L, Fowlkes J B 2006 Ultrasound Med. Biol. 32 1037
[9] Udesen J, Jensen J A 2006 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 959
[10] Bohs L N, Geiman B J, Anderson M E, Gebhart S C, Trahey G E 2000 Ultrasonics 38 369
[11] FAHRBACH K 1969 Biomed. Eng-Biomed. Te. 14 233
[12] Peronneau P, Bournat J, Bugnon A, Barbet A, Xhaard M 1974 Cardiovasc. Appl. Ultrasound 1 66
[13] Wang W Q, Yao L X 1982 Ultrasound Med. Biol. 8 421
[14] Tsang I K H, Yiu B Y S, Yu A C H 2009 IEEE Int. Ultrason. Symp. 20091387
[15] Bercoff J, Montaldo G, Loupas T, Savery D, Mézière F, Fink M, Tanter M 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 134
[16] Denarie B, Tangen T A, Ekroll I K, Rolim N, Torp H, Bjastad T, Lovstakken L 2013 IEEE Trans. Med. Imaging 32 1265
[17] Zang J Q, Xu K L, Han Q J, Lu Q Y, Mei Y Y, Ta D A 2021Acta Phys. Sin. 70 114304(in Chinese) [臧佳琦, 许凯亮, 韩清见, 陆起涌, 梅永丰, 他得安2021物理学报 70 114304]
[18] Demene C, Deffieux T, Pernot M, Osmanski B F, Biran V, Gennisson J L, Sieu L A, Bergel A, Franqui S, Correas J M, Cohen I, Baud O, Tanter M 2015 IEEE Trans. Med. Imaging 34 2271
[19] Sui Y H, Yan S Y, Yu J J, Song J P, Ta D A, Wang W Q, Xu K 2022 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 2425
[20] Huang L J, Wang Y D, Wang R, Wei X Y, He Q, Zheng C C, Peng H, Luo J W 2023 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 70 378
[21] Chen Y R, Fang B H, Meng F L, Luo J W, Luo X B 2024 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 71 459
[22] Yan S Y, Xu K L, Ta D A 2023J. Fudan Univ. (Nat. Sci.) 62 409(in Chinese) [闫少渊, 许凯亮, 他得安2023 复旦学报(自然科学版) 62 409]
[23] Yiu B Y, Yu A C 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 1733
[24] Wang K Y, Zhou Y L, He L Y, Lu C Y, Yu R, Wu D W 2022 Acta Phys. Sin. 71 104303(in Chinese) [王康宇, 周昱林, 何丽媛, 卢春尧, 于润, 吴大伟2022 物理学报 71 104303]
[25] Yan S Y, Shou J J, Yu J J, Song J P, Mao Y, Xu K L 2023 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 70 613
[26] Gong P, Song P F, Chen S G 2017 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64 1674
[27] Gong P, Song P F, Huang C W, Chen S G 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 1977
[28] Ferrara K, DeAngelis G 1997 Ultrasound Med. Biol. 23 321
[29] Demene C, Pernot M, Biran V, Alison M, Fink M, Baud O, Tanter M 2014 J. Cereb. Blood Flow Metab. 34 1009
[30] Jensen J A, Svendsen N B 1992 IEEE transactions on ultrasonics, ferroelectrics, and frequency control 39 262
[31] Jensen J A 1997 Medical & Biological Engineering & Computing 34 351
[32] Rabut C, Correia M, Finel V, Pezet S, Pernot M, Deffieux T, Tanter M 2019 Nat. Methods 16 994
[33] Posada D, Poree J, Pellissier A, Chayer B, Tournoux F, Cloutier G, Garcia D 2016 IEEE Trans. Med. Imaging 35 1510
[34] Poree J, Goudot G, Pedreira O, Laborie E, Khider L, Mirault T, Messas E, Julia P, Alsac J M, Tanter M, Pernot M 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 2117
[35] Ecarlat P, Perrot V, Carcreff E, Nicolas B, Liebgott H, Garcia D 2022 IEEE Int. Ultrason. Symp. 20221
[36] Nahas H, Au J S, Ishii T, Yiu B Y S, Chee A J Y, Yu A C H 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 2615
[37] Nahas H, Ishii T, Yiu B Y S, Yu A C H 2023 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 70 1384
[38] Fu Y P, Sun Q D, Li B Y, Ta D A, Xu K L 2023Acta Phys. Sin. 72 074302(in Chinese) [付亚鹏, 孙乾东, 李博艺, 他得安, 许凯亮2023 物理学报 72 074302]
计量
- 文章访问数: 176
- PDF下载量: 15
- 被引次数: 0