搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复合平面波延迟乘和的超声成像方法

燕启煜 张辉 李军 李超杰 朱文发 柴晓冬 范国鹏 徐吉超 高春翔 张海燕

引用本文:
Citation:

基于复合平面波延迟乘和的超声成像方法

燕启煜, 张辉, 李军, 李超杰, 朱文发, 柴晓冬, 范国鹏, 徐吉超, 高春翔, 张海燕

Ultrasonic imaging method based on coherent plane wave compounding with delay multiplication and sum

YAN Qiyu, ZHANG Hui, LI Jun, LI Chaojie, ZHU Wenfa, CHAI Xiaodong, FAN Guopeng, XU Jichao, GAO Chunxiang, ZHANG Haiyan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 平面波成像因其数据采集速度快, 系统结构简单, 在无损检测中得到广泛应用. 但由于其采用非聚焦发射方式, 声能分布分散, 成像质量较差. 为改善成像质量, 复合平面波成像方法通过多角度平面波的相干叠加来提升成像效果, 但在图像分辨率、对比度以及伪像抑制方面仍存在不足. 为了提高平面波成像质量, 本文提出一种基于延迟乘和的复合平面波成像方法(coherent plane wave compounding-delay multiply and sum, CPWC-DMAS). 首先对多个角度的平面波信号进行相干叠加, 实现多角度信息融合. 然后在图像输出中引入空间相干性来提高图像质量, 实现多角度复合平面波的高质量成像. 最后, 对钢轨与车轮构件进行实验验证, 结果表明: CPWC-DMAS算法与全聚焦和复合平面波算法相比, 在阵列性能指标方面提升了51.18%, 50%, 在对比度方面提升了50.8%, 46.52%, 在信噪比方面提升了25.14%, 21.56%, 提高了成像质量和分辨能力.
    Plane wave imaging has widespread applications in non-destructive testing due to its fast data acquisition speed and simple system architecture. However, traditional plane wave imaging employs an unfocused transmission scheme. This results in dispersed acoustic energy distribution, low imaging resolution, and poor image quality. Although coherent plane wave compounding (CPWC) improves imaging performance through multi-angle coherent summation, it still has shortcomings in image resolution, contrast, and artifact suppression when detecting defects far from the acoustic axis center. To break through these limitations, this paper proposes a coherent plane wave compounding with delay multiplication and sum (CPWC-DMAS) method in which multi-angle plane wave is combined with DMAS beamforming technology to enhance imaging quality and resolution capability. First, coherent summation of multi-angle plane wave signals is performed to achieve comprehensive angular information fusion, ensuring effective coverage of the detection region. Subsequently, the DMAS method is used to perform cross-multiplication and summation of signals acquired from all angles by different array elements, utilizing the spatial coherence between received signals from different array elements to effectively enhance the target echo signals, while suppressing incoherent noise and reducing artifacts. Finally, to validate the correctness and effectiveness of the proposed method, experimental verification is conducted on defects embedded in steel rail and wheel components. The results indicate that compared with the total focusing method and CPWC algorithms, the proposed CPWC-DMAS algorithm achieves significant improvements of 51.18% and 50% in array performance index, 50.8% and 46.52% in contrast ratio, and 25.14% and 21.56% in signal-to-noise ratio, respectively. In summary, the proposed CPWC-DMAS algorithm demonstrates significant advantages over traditional methods in resolution enhancement, contrast improvement, and artifact suppression, achieving high-quality imaging for multi-angle coherent plane wave compounding. This method provides a novel approach for detecting defects both near and away from the center of acoustic axis, offering new insights into defect detection in complex structures with broad engineering applications.
  • 图 1  全聚焦成像原理示意图

    Fig. 1.  Schematic diagram of the total focusing method principle.

    图 2  平面波算法示意图

    Fig. 2.  Schematic diagram of the coherent plane wave compounding algorithm.

    图 3  CPWC-DMAS算法流程图

    Fig. 3.  Flowchart of CPWC-DMAS algorithm.

    图 4  钢轨与车轮试样缺陷分布 (a) A区钢轨横向缺陷; (b) B区钢轨纵向缺陷; (c) C区车轮纵向缺陷, D区车轮底部缺陷

    Fig. 4.  Distribution of defects in rail and wheel specimens: (a) Transverse defects in Region A of the rail; (b) longitudinal defects in Region B of the rail; (c) longitudinal defects in Region C of the wheel, bottom defect in Region D of the wheel.

    图 5  钢轨缺陷成像结果 (a), (d) TFM; (b), (e) CPWC; (c), (f) CPWC-DMAS

    Fig. 5.  Imaging results of rail defects: (a), (d) TFM; (b), (e) CPWC; (c), (f) CPWC-DMAS.

    图 6  钢轨缺陷成像指标 (a)—(c)横向缺陷的API, CR, SNR; (d)—(f)纵向缺陷的API, CR, SNR

    Fig. 6.  Rail defect imaging metrics: (a)—(c) API, CR, SNR for transverse defects; (d)—(f) API, CR, SNR for longitudinal defects.

    图 7  车轮缺陷成像结果 (a), (d) TFM; (b), (e) CPWC; (c), (f) CPWC-DMAS

    Fig. 7.  Imaging results of wheel defects: (a), (d) TFM; (b), (e) CPWC; (c), (f) CPWC-DMAS.

    图 8  车轮缺陷成像指标 (a)—(c) 纵向缺陷的API, CR, SNR; (d)—(f) 底部缺陷的API, CR, SNR

    Fig. 8.  Wheel defect imaging metrics: (a)–(c) API, CR, SNR for longitudinal defects; (d)–(f) API, CR, SNR for bottom defects.

  • [1]

    Gupta M, Khan M A, Butola R, Singari R M 2022 Adv. Mater. Process. Te. 8 2286

    [2]

    Shi H, Ebrahimi M, Zhou P, Shao K, Li J 2023 J. Process Mech. Eng. 237 511Google Scholar

    [3]

    朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕 2022 物理学报 71 244301Google Scholar

    Zhu Q, Xu D, Zhang Y J, Li Y J, Wang W, Zhang H Y 2022 Acta Phys. Sin. 71 244301Google Scholar

    [4]

    Zhu W F, Wei Z B, Fan G P, Li Z W, Xu J C, Qi W W, Mei Y H, Zhao C Y 2025 Nondestruct. Test. Eva 1-22

    [5]

    He H B, Sun K H, Sun C M, He J G, Liang E F, Liu Q 2023 Photoacoustics 31 100490Google Scholar

    [6]

    Xu Q, Wang H, Yao Y, Li X 2021 Proceedings of the IEEE Far East NDT New Technology & Application Forum Kunming, China, December 14–17, 2021, p309

    [7]

    Yang J J, Fan G P, Xiang Y X, Zhang H Y, Zhu W F, Zhang H, Li Z W 2024 Constr. Build. Mater. 425 135948Google Scholar

    [8]

    Gao C X, Zhu W F, Xiang Y X, Zhang H Y, Fan G P, Zhang H 2024 J. Nondestruct. Eval. 43 26Google Scholar

    [9]

    Li C J, Zhang H, Qi Y, Hou C L, Zhu W F, Zhou X, Chai X D, Qi W W, Fan G P, Xu J C, Zhang H Y 2025 Appl. Acoust. 231 110493Google Scholar

    [10]

    Yu L Y, Giurgiutiu V 2008 Ultrasonics 48 117Google Scholar

    [11]

    Stepinski T, Ambrozinski L, Uhl T 2013 Proceedings of the Structural Health Monitoring Dresden, Germany, September 3–6, 2013, p2210

    [12]

    Hendriks G A, Weijers G, Chen C, Hertel M, Lee C Y, Dueppenbecker P M, Radicke M, Milkowski A, Hansen H H, De Korte C L 2022 IEEE. T. Ultrason. Ferr. 69 2039Google Scholar

    [13]

    Jensen J A 2007 Prog. Biophys. Mol. Bio. 93 153Google Scholar

    [14]

    Bazulin E G, Evseev I V 2021 Russ. J. Nondestruct. Test. 57 423Google Scholar

    [15]

    Luo L, Tan Y H, Li J L, Zhang Y, Gao X R 2022 NDT E Int. 127 102601Google Scholar

    [16]

    Zhang X, Li J, He Q, Zhang H Y, Luo J W 2018 Proceedings of the IEEE International Ultrasonics Symposium Kobe, Japan, October 22–25, 2018, p1

    [17]

    Tan Y H, Luo L, Li J L, Zhang Y, Gao X R, Peng J P 2022 J. Nondestruct. Eval. 41 33Google Scholar

    [18]

    Montaldo G, Tanter M, Bercoff J, Benech N, Fink M 2009 IEEE. T. Ultrason. Ferr. 56 489Google Scholar

    [19]

    Afrakhteh S, Behnam H 2021 IEEE. T. Ultrason. Ferr. 68 3094Google Scholar

    [20]

    Zhang X W, Wang Q 2023 Ultrasonics 132 106972Google Scholar

    [21]

    Synnevag J F, Austeng A, Holm S 2009 IEEE. T. Ultrason. Ferr. 56 1868Google Scholar

    [22]

    Xu M, Chen Y, Ding M, Ming Y 2012 Proceedings of Medical Imaging 2012: Ultrasonic Imaging, Tomography, and Therapy San Diego, USA, February 4-9, 2012 p122

    [23]

    张芸芸, 李义方, 石勤振, 许乐修, 戴菲, 邢文宇, 他得安 2023 物理学报 72 154303Google Scholar

    Zhang Y Y, Li Y F, Shi Q Z, Xu L X, Dai F, Xing W Y, Ta D A 2023 Acta Phys. Sin. 72 154303Google Scholar

    [24]

    Yang C, Jiao Y, Jiang T Y, Xu Y W, Cui Y Y 2020 Appl. Sci. 10 2250Google Scholar

    [25]

    Dolmatov D, Sednev D, Pinchuk R 2018 Key Eng. Mater. 769 262Google Scholar

    [26]

    Chen Y, Kong Q R, Xiong Z H, Mao Q Q, Chen M, Lu C 2023 Ultrasound Med. Biol. 49 802Google Scholar

    [27]

    Lim H B, Nhung N T T, Li E P, Thang N D 2008 IEEE. T. Biomed. Eng. 55 1697Google Scholar

    [28]

    Matrone G, Savoia A S, Caliano G, Magenes G 2015 Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Milan, Italy, August 25–29, 2015, p137

    [29]

    Matrone G, Savoia A S, Caliano G, Magenes G 2016 Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Orlando, FL, USA, August 16–20, 2016, p3223

    [30]

    Yan X, Qi Y X, Wang Y M, Wang Y Y 2021 IEEE. T. Ultrason. Ferr. 69 580

    [31]

    Chen Y Q, Rong L F, Song Y, Yang X Y 2025 KSCE. J. Civ. Eng. 29 100235Google Scholar

    [32]

    Esmailian K, Asl B M 2022 Comput. Meth. Prog. Bio. 226 107171Google Scholar

  • [1] 刘淑倩, 张海燕, 张辉, 朱文发, 陈祎婷, 刘雅洁. 融合环形统计矢量的复合材料褶皱缺陷超声相位迁移成像. 物理学报, doi: 10.7498/aps.73.20240714
    [2] 张广迪, 毛力, 徐红星. 平面波与高斯函数或样条函数复合基组. 物理学报, doi: 10.7498/aps.72.20230872
    [3] 张林峰, 丁潇川, 侯智善, 曹宇. 激光直写玻璃基平面波导用于荧光成像. 物理学报, doi: 10.7498/aps.72.20222033
    [4] 李海宁, 禹利达, 甘仁杰, 张伟斌, 杨占锋. 颗粒填充复合炸药裂纹缺陷的高信噪比超声成像方法. 物理学报, doi: 10.7498/aps.72.20230522
    [5] 张芸芸, 李义方, 石勤振, 许乐修, 戴菲, 邢文宇, 他得安. 基于相位迁移的超声平面波多层皮质骨成像. 物理学报, doi: 10.7498/aps.72.20230581
    [6] 张辉, 朱文发, 范国鹏, 张海燕. 非连续阻抗粘接结构脱粘缺陷的稀布阵列超声成像. 物理学报, doi: 10.7498/aps.72.20221771
    [7] 王康宇, 周昱林, 何丽媛, 卢春尧, 于润, 吴大伟. 多角度复合的超声多普勒矢量血流成像. 物理学报, doi: 10.7498/aps.71.20211825
    [8] 张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬. 碳纤维增强复合材料褶皱缺陷的超声成像. 物理学报, doi: 10.7498/aps.70.20210032
    [9] 张海燕, 徐梦云, 张辉, 朱文发, 柴晓冬. 利用扩散场信息的超声兰姆波全聚焦成像. 物理学报, doi: 10.7498/aps.67.20181268
    [10] 张敏睿, 贺正权, 汪韬, 田进寿. 偏振双向衰减对光学成像系统像质影响的矢量平面波谱理论分析. 物理学报, doi: 10.7498/aps.66.084202
    [11] 赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧. 线照明并行谱域光学相干层析成像系统与缺陷检测应用研究. 物理学报, doi: 10.7498/aps.63.194201
    [12] 徐琰锋, 胡文祥. 纵向带状裂隙形貌的逆时偏移超声成像. 物理学报, doi: 10.7498/aps.63.154302
    [13] 韦永梅, 彭虎. 一种基于非衍射波的高帧率超声成像发射系统的研究. 物理学报, doi: 10.7498/aps.63.198702
    [14] 行鸿彦, 程艳燕, 徐伟. 基于广义窗函数和最小二乘支持向量机的混沌背景下微弱信号检测. 物理学报, doi: 10.7498/aps.61.100506
    [15] 霍雁, 张存林. 碳纤维复合材料内部缺陷深度的定量红外检测. 物理学报, doi: 10.7498/aps.61.144204
    [16] 吕耀平, 顾国锋, 陆华春, 戴瑜, 唐国宁. 振荡介质中平面波的反射. 物理学报, doi: 10.7498/aps.58.7573
    [17] 肖玲, 程小劲, 徐剑秋. 分数自成像平面波导的光束组束. 物理学报, doi: 10.7498/aps.58.3870
    [18] 王运华, 郭立新, 吴振森. 平行柱体对平面波/高斯波束电磁散射. 物理学报, doi: 10.7498/aps.56.186
    [19] 吴振森, 王一平. 直接模拟法和统计估计法研究平面波通过离散随机介质的散射. 物理学报, doi: 10.7498/aps.37.698
    [20] 张金标. 分层介质中金属栅的平面波散射. 物理学报, doi: 10.7498/aps.25.162
计量
  • 文章访问数:  448
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-03
  • 修回日期:  2025-07-15
  • 上网日期:  2025-07-21

/

返回文章
返回