搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光直写玻璃基平面波导用于荧光成像

张林峰 丁潇川 侯智善 曹宇

引用本文:
Citation:

激光直写玻璃基平面波导用于荧光成像

张林峰, 丁潇川, 侯智善, 曹宇

Direct laser-writing of glass-based planar waveguide for fluorescence imaging

Zhang Lin-Feng, Ding Xiao-Chuan, Hou Zhi-Shan, Cao Yu
PDF
HTML
导出引用
  • 荧光显微成像技术具有标记能力强、信号强度高、实验成本低、成像过程简单且从活体到离体均可成像等特点, 在肿瘤细胞成像、药物分布体内探测等生物学分析成像研究中应用广泛, 但如何同时兼具宽视场和高分辨率是当前荧光显微成像领域的一大难点. 平面硅波导被发现可实现超薄样品大范围成像, 然而其需要溅射沉积或是离子束刻蚀等制备工艺, 相关工艺复杂且设备昂贵. 本文设计了一种基于皮秒激光直写的平面波导型荧光显微装置, 利用皮秒激光刻蚀玻璃表层快速制备微米级沟槽, 进一步通过旋涂SU-8光刻胶实现低成本、批量化制备玻璃基平面波导. 通过调整激光加工功率、频率、扫描速度等参数可以定制波导直径和深度. 采用罗丹明B荧光分子的显微探测实验, 验证了该激光直写玻璃基平面波导完全满足高分辨率和大视场的生物成像需要, 这种简易快速的加工手段能够有效提升荧光成像领域的经济效益和社会效益.
    Fluorescent microscopic imaging technology has the characteristics of strong labeling capability, high signal strength, low experimental cost, simple imaging process, and imaging from living to in vitro, which is widely used in biological analysis imaging research such as tumor cell imaging, drug distribution in vivo detection, but how to simultaneously have both a wide field of view and a high resolution is a major difficulty in the current field of fluorescence microscopic imaging. Planar silicon waveguides have been found to be able to achieve a wide range of imaging of ultra-thin samples. However, they require sputtering deposition or ion beam etching and other preparation processes. The related processes are complex and equipment required is expensive. In this work, a planar-waveguide-type fluorescence microscope device based on direct picosecond-laser-writing is designed, in which picosecond laser is used to etch the glass surface to rapidly prepare micron sized grooves, and the low-cost and batch-preparation of glass based planar waveguides is further realized by spinning SU-8 photoresist. The waveguide diameter and depth can be customized by adjusting laser processing power, frequency, scanning speed and other parameters. The microscopic detection experiment with using Rhodamine B fluorescent molecule verifies that the direct laser-writing glass based planar waveguide fully meets the requirements for biological imaging with high resolution and large field of view. This simple and rapid processing method can effectively improve the the fluorescence imaging.
      通信作者: 侯智善, houzs21@wzu.edu.cn ; 曹宇, yucao@wzu.edu.cn
    • 基金项目: 浙江省自然科学基金资助(批准号: LZ20E050003, LD22E050001)和温州市基础性科研项目(批准号: 2022G0025)资助的课题.
      Corresponding author: Hou Zhi-Shan, houzs21@wzu.edu.cn ; Cao Yu, yucao@wzu.edu.cn
    • Funds: Project supported by Natural Science Foundation of Zhejiang Province, China (Grant Nos. LZ20E050003, LD22E050001) and Wenzhou Basic Scientific Research Project (Grant No. 2022G0025)
    [1]

    Vysniauskas A, Lopez-Duarte I, Duchemin N, Vu T T, Wu Y L, Budynina E M, Volkova Y A, Cabrera E P, Ramirez-Ornelas D E, Kuimova M K 2017 Phys. Chem. Chem. Phys. 19 25252Google Scholar

    [2]

    Witte S, Negrean A, Lodder J C, de Kock C P J, Silva G T, Mansvelder H D, Groot M L 2011 Proc. Natl. Acad. Sci. U. S. A. 108 5970Google Scholar

    [3]

    Kuimova M K 2012 Phys. Chem. Chem. Phys. 14 12671Google Scholar

    [4]

    Yoon S, Kim M, Jang M, Choi Y, Choi W, Kang S, Choi W 2020 Nat. Rev. Phys. 2 141Google Scholar

    [5]

    Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M 2015 Nature 527 499Google Scholar

    [6]

    Querard J, Zhang R K, Kelemen Z, Plamont M A, Xie X J, Chouket R, Roemgens I, Korepina Y, Albright S, Ipendey E, Volovitch M, Sladitschek H L, Neveu P, Gissot L, Gautier A, Faure J D, Croquette V, Le Saux T, Jullien L 2017 Nat. Commun. 8 2173Google Scholar

    [7]

    Wang L, Pitter M C, Somekh M G 2010 Appl. Opt. 49 6160Google Scholar

    [8]

    Schneckenburger H, Richter V 2021 Photonics 8 275Google Scholar

    [9]

    Moo E K, Abusara Z, Abu Osman N A, Pingguan-Murphy B, Herzog W 2013 J. Biomech. 46 2024Google Scholar

    [10]

    Nishiyama H, Suga M, Ogura T, Maruyama Y, Koizumi M, Mio K, Kitamura S, Sato C 2010 J. Struct. Biol. 169 438Google Scholar

    [11]

    Kyrish M, Dobbs J, Jain S, Wang X, Yu D H, Richards-Kortum R, Tkaczyk T S 2013 J. Biomed. Opt. 18 096003Google Scholar

    [12]

    Lanzano LHernandez I C, Castello M, Gratton E, Diaspro A, Vicidomini G 2015 Nat. Commun. 6 6701Google Scholar

    [13]

    王美昌, 于斌, 张炜, 林丹樱, 屈军乐 2020 物理学报 69 238701Google Scholar

    Wang M C, Yu B, Zhang W, Lin D Y, Qu J L 2020 Acta Phys. Sin. 69 238701Google Scholar

    [14]

    Chen S Y, Wang Z C, Zhang D, Wang A M, Chen L Y, Cheng H P, Wu R L 2020 Neurosci. Bull. 36 1182Google Scholar

    [15]

    Chatterjee K, Pratiwi F W, Wu F C M, Chen P L, Chen B C 2018 Appl. Spectrosc. 72 1137Google Scholar

    [16]

    Santi P A 2011 J. Histochem. Cytochem. 59 129Google Scholar

    [17]

    Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer E H K 2011 Plant J. 68 377Google Scholar

    [18]

    Senarathna J, Yu H, Deng C, Zou A L, Issa J B, Hadjiabadi D H, Gil S, Wang Q H, Tyler B M, Thakor N V, Pathak A P 2019 Nat. Commun. 10 99Google Scholar

    [19]

    Sekiguchi K J, Shekhtmeyster P, Merten K, Arena A, Cook D, Hoffman E, Ngo A, Nimmerjahn A 2016 Nat. Commun. 7 11450Google Scholar

    [20]

    Zhou Y L, Li X 2017 Opt. Rev. 24 398Google Scholar

    [21]

    Glaser A K, Chen Y, Yin C B, Wei L P, Barner L A, Reder N P, Liu J T C 2018 Sci. Rep. 8 13878Google Scholar

    [22]

    Wu Y Q, Xu X, Wang J X, Zhang X, Shi G H 2021 Acta Opt. Sin. 41 2018001Google Scholar

    [23]

    王海龙 2017 博士学位论文 (吉林: 吉林大学)

    Wang H L 2017 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [24]

    O'Carroll D, Lieberwirth I, Redmond G 2007 Nat. Nanotechnol. 2 180Google Scholar

    [25]

    Lin Y, Gao C, Gritsenko D, Zhou R, Xu J 2018 Microfluid. Nanofluid. 22 97Google Scholar

    [26]

    Casamenti E, Pollonghini S, Bellouard Y 2021 Opt. Express 29 35054Google Scholar

    [27]

    Anders K E, Stefan B, Tung-Cheng W, Ralf H, Thomas Hr, Mark S 2021 ACS Photon. 8 1944Google Scholar

  • 图 1  红外皮秒激光加工平台

    Fig. 1.  Infrared picosecond laser processing platform.

    图 2  波导加工工艺流程

    Fig. 2.  Waveguide processing process.

    图 3  共聚焦表征 (a) 100 kHz; (b) 200 kHz; (c) 300 kHz; (d) 400 kHz; (e) 500 kHz 等重复频率下不同激光功率刻蚀的微沟槽深度; (f)刻蚀微沟槽显微镜图像

    Fig. 3.  Confocal characterization (a) 100 kHz; (b) 200 kHz; (c) 300 kHz; (d) 400 kHz; (e) 500 kHz, etc repetition frequencies, etching micro groove depth with different laser power; (f) Microscopic images of etched grooves.

    图 4  (a)分束器显微镜图像; (b) 分束器通光表征

    Fig. 4.  (a) Beam splitter microscope image; (b) beam splitter clear characterization

    图 5  (a)波导荧光探测示意图; (b)平面波导的荧光表征图和实物图; (c)输入路径局部放大图; (d)输出路径局部放大图

    Fig. 5.  (a) Schematic diagram of waveguide fluorescence detection; (b)fluorescence characterization and physical diagram of a planar waveguide; (c) input path local magnification; (d) output path local magnification.

    图 6  (a)聚合物波导的集成制备图像; (b)蜿蜒型波导; (c)直线型波导

    Fig. 6.  (a) Integrated fabrication image of polymer waveguide; (b) Serpentine waveguide; (c) Linear waveguide.

  • [1]

    Vysniauskas A, Lopez-Duarte I, Duchemin N, Vu T T, Wu Y L, Budynina E M, Volkova Y A, Cabrera E P, Ramirez-Ornelas D E, Kuimova M K 2017 Phys. Chem. Chem. Phys. 19 25252Google Scholar

    [2]

    Witte S, Negrean A, Lodder J C, de Kock C P J, Silva G T, Mansvelder H D, Groot M L 2011 Proc. Natl. Acad. Sci. U. S. A. 108 5970Google Scholar

    [3]

    Kuimova M K 2012 Phys. Chem. Chem. Phys. 14 12671Google Scholar

    [4]

    Yoon S, Kim M, Jang M, Choi Y, Choi W, Kang S, Choi W 2020 Nat. Rev. Phys. 2 141Google Scholar

    [5]

    Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M 2015 Nature 527 499Google Scholar

    [6]

    Querard J, Zhang R K, Kelemen Z, Plamont M A, Xie X J, Chouket R, Roemgens I, Korepina Y, Albright S, Ipendey E, Volovitch M, Sladitschek H L, Neveu P, Gissot L, Gautier A, Faure J D, Croquette V, Le Saux T, Jullien L 2017 Nat. Commun. 8 2173Google Scholar

    [7]

    Wang L, Pitter M C, Somekh M G 2010 Appl. Opt. 49 6160Google Scholar

    [8]

    Schneckenburger H, Richter V 2021 Photonics 8 275Google Scholar

    [9]

    Moo E K, Abusara Z, Abu Osman N A, Pingguan-Murphy B, Herzog W 2013 J. Biomech. 46 2024Google Scholar

    [10]

    Nishiyama H, Suga M, Ogura T, Maruyama Y, Koizumi M, Mio K, Kitamura S, Sato C 2010 J. Struct. Biol. 169 438Google Scholar

    [11]

    Kyrish M, Dobbs J, Jain S, Wang X, Yu D H, Richards-Kortum R, Tkaczyk T S 2013 J. Biomed. Opt. 18 096003Google Scholar

    [12]

    Lanzano LHernandez I C, Castello M, Gratton E, Diaspro A, Vicidomini G 2015 Nat. Commun. 6 6701Google Scholar

    [13]

    王美昌, 于斌, 张炜, 林丹樱, 屈军乐 2020 物理学报 69 238701Google Scholar

    Wang M C, Yu B, Zhang W, Lin D Y, Qu J L 2020 Acta Phys. Sin. 69 238701Google Scholar

    [14]

    Chen S Y, Wang Z C, Zhang D, Wang A M, Chen L Y, Cheng H P, Wu R L 2020 Neurosci. Bull. 36 1182Google Scholar

    [15]

    Chatterjee K, Pratiwi F W, Wu F C M, Chen P L, Chen B C 2018 Appl. Spectrosc. 72 1137Google Scholar

    [16]

    Santi P A 2011 J. Histochem. Cytochem. 59 129Google Scholar

    [17]

    Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer E H K 2011 Plant J. 68 377Google Scholar

    [18]

    Senarathna J, Yu H, Deng C, Zou A L, Issa J B, Hadjiabadi D H, Gil S, Wang Q H, Tyler B M, Thakor N V, Pathak A P 2019 Nat. Commun. 10 99Google Scholar

    [19]

    Sekiguchi K J, Shekhtmeyster P, Merten K, Arena A, Cook D, Hoffman E, Ngo A, Nimmerjahn A 2016 Nat. Commun. 7 11450Google Scholar

    [20]

    Zhou Y L, Li X 2017 Opt. Rev. 24 398Google Scholar

    [21]

    Glaser A K, Chen Y, Yin C B, Wei L P, Barner L A, Reder N P, Liu J T C 2018 Sci. Rep. 8 13878Google Scholar

    [22]

    Wu Y Q, Xu X, Wang J X, Zhang X, Shi G H 2021 Acta Opt. Sin. 41 2018001Google Scholar

    [23]

    王海龙 2017 博士学位论文 (吉林: 吉林大学)

    Wang H L 2017 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)

    [24]

    O'Carroll D, Lieberwirth I, Redmond G 2007 Nat. Nanotechnol. 2 180Google Scholar

    [25]

    Lin Y, Gao C, Gritsenko D, Zhou R, Xu J 2018 Microfluid. Nanofluid. 22 97Google Scholar

    [26]

    Casamenti E, Pollonghini S, Bellouard Y 2021 Opt. Express 29 35054Google Scholar

    [27]

    Anders K E, Stefan B, Tung-Cheng W, Ralf H, Thomas Hr, Mark S 2021 ACS Photon. 8 1944Google Scholar

  • [1] 王康颖, 马才媛, 蔚慧敏, 张海涛, 岑建勇, 王英英, 潘俊星, 张进军. 振荡场作用下聚合物/纳米棒混合体系的自组装. 物理学报, 2023, 72(7): 079401. doi: 10.7498/aps.72.20222207
    [2] 陈天宇, 王长顺, 潘雨佳, 孙丽丽. 利用全息法在偶氮聚合物薄膜中记录涡旋光场. 物理学报, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496
    [3] 王文静, 李冲, 张毛毛, 高琨. 共轭聚合物内非均匀场驱动的超快激子输运的动力学研究. 物理学报, 2019, 68(17): 177201. doi: 10.7498/aps.68.20190432
    [4] 王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照. 激光刻蚀对镀金表面二次电子发射的有效抑制. 物理学报, 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [5] 段兴跃, 李小康, 程谋森, 李干. 激光烧蚀掺杂金属聚合物羽流屏蔽特性数值研究. 物理学报, 2016, 65(19): 197901. doi: 10.7498/aps.65.197901
    [6] 岱钦, 吴杰, 邬小娇, 乌日娜, 彭增辉, 李大禹. 染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究. 物理学报, 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [7] 刘丽娟, 黄文彬, 刁志辉, 张桂洋, 彭增辉, 刘永刚, 宣丽. 基于聚合物支撑形貌液晶/聚合物光栅的低阈值分布反馈式激光器. 物理学报, 2014, 63(19): 194202. doi: 10.7498/aps.63.194202
    [8] 邓舒鹏, 黄文彬, 刘永刚, 刁志辉, 彭增辉, 姚丽双, 宣丽. 基于全息液晶/聚合物光栅的分布反馈式激光器的波长调谐特性研究. 物理学报, 2012, 61(12): 126101. doi: 10.7498/aps.61.126101
    [9] 邓舒鹏, 李文萃, 黄文彬, 刘永刚, 彭增辉, 鲁兴海, 宣丽. 基于全息聚合物分散液晶的有机二维光子晶体激光器的研究. 物理学报, 2011, 60(8): 086103. doi: 10.7498/aps.60.086103
    [10] 邓舒鹏, 李文萃, 黄文彬, 刘永刚, 鲁兴海, 宣丽. 基于透射式液晶/聚合物光栅的分布反馈式激光器的研究. 物理学报, 2011, 60(5): 056102. doi: 10.7498/aps.60.056102
    [11] 祝昆, 周丽, 尤洪海, 江楠, 普小云. 光纤回音壁模式激光产生长度的实验与理论研究. 物理学报, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [12] 王保争, 张安琪, 吴宏滨, 杨伟, 文尚胜. 一种基于荧光材料的聚合物白光发光二极管. 物理学报, 2010, 59(6): 4240-4244. doi: 10.7498/aps.59.4240
    [13] 王晓东, 欧阳洁, 苏进. 非均匀剪切流场中液晶聚合物微观结构的无网格模拟. 物理学报, 2010, 59(9): 6369-6376. doi: 10.7498/aps.59.6369
    [14] 黎爱珍, 陈志峰, 王惠, 张燕伟, 张伟, 余汉城, 黄锦汪, 计亮年. F?rster双分子猝灭作用对卟啉侧链聚合物荧光衰变的影响. 物理学报, 2009, 58(2): 1321-1325. doi: 10.7498/aps.58.1321
    [15] 陈志峰, 王 惠, 张 伟, 沈 涵, 余汉城, 黄锦汪, 赖天树, 计亮年. 激子旋转弛豫对低掺杂卟啉侧链聚合物荧光衰变过程的影响. 物理学报, 2008, 57(8): 5296-5301. doi: 10.7498/aps.57.5296
    [16] 林浩铭, 邵永红, 屈军乐, 尹 君, 陈思平, 牛憨笨. 散斑照明宽场荧光层析显微成像技术研究. 物理学报, 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
    [17] 刘 维, 樊荣伟, 李晓晖, 陈 辉, 夏元钦, 陈德应. 小分子改性的聚合物固体染料激光特性研究. 物理学报, 2007, 56(9): 5276-5280. doi: 10.7498/aps.56.5276
    [18] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [19] 任立勇, 姚保利, 侯 洵, 易文辉, 汪敏强. 有机聚合物薄膜激光诱导相位孔衍射的实验和理论. 物理学报, 2000, 49(10): 1973-1977. doi: 10.7498/aps.49.1973
    [20] 袁仁宽, 黄振春, 郑有炓, 唐文国, 李自元, 沈学础. 导电聚合物P3MT的荧光光谱. 物理学报, 1988, 37(5): 857-862. doi: 10.7498/aps.37.857
计量
  • 文章访问数:  3809
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 修回日期:  2023-02-02
  • 上网日期:  2023-02-09
  • 刊出日期:  2023-04-05

/

返回文章
返回