搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

向列相液晶的饱和非线性及双稳态孤子

汪浩然 张银川 胡巍 郭旗

引用本文:
Citation:

向列相液晶的饱和非线性及双稳态孤子

汪浩然, 张银川, 胡巍, 郭旗

Saturable nonlinearity and bistable solitons in nematic liquid crystals

Wang Hao-Ran, Zhang Yin-Chuan, Hu Wei, Guo Qi
PDF
HTML
导出引用
  • 本文讨论了正性向列相液晶的饱和非局域非线性. 从光束在正性向列相液晶中传输满足的非线性耦合模型出发, 分别讨论了$1+1$维和$1+2$维情况下液晶非线性折射率的饱和特性, 并得到了在不同预偏角情况下, 饱和双稳态孤子的数值解. 结果表明: 液晶中预偏角越大其饱和非线性折射率的值就越小, 存在双稳态孤子的范围也越小; 当非线性折射率饱和后, 双稳态孤子之间的波形差异明显, 且饱和情况下存在的孤子光斑不再是圆形.
    The saturated nonlocal nonlinearity of positive nematic liquid crystals (NLCs) is discussed in this paper. Based on the nonlinear coupling model satisfied by the beam propagation in a positive NLC, the saturable characteristics of the nonlinear refractive index (NRI) in the cases of $1+1$ and $1+2$ dimensions are discussed separately, and the numerical solutions of saturated bistable solitons for different pre-declination angles are obtained. The saturated NRI is smaller for larger pre-deflection angles, and the center of the saturated NRI is almost flat for different pre-deflection angles in $1+2$ dimension. Solitons in the saturated case are no longer standard circular, whose waveforms in the x and y directions are slightly different. We also find that saturated bistable solitons can exist in NLCs for both $1+1$ and $1+2$ dimensions. With the increase of pre-deflection angle, the existing regions of bistable solitons decrease, while their minimum beamwidth increases. Although the beamwidths of bistable solitons are the same, they have different powers and propagation constants, and their normalized soliton waveforms differ in the $1+2$ dimensional case.
      通信作者: 郭旗, guoq@scnu.edu.cn
    • 基金项目: 广东省自然科学基金(批准号: 2021A1515012214)和广州市科技计划(批准号: 2019050001)资助的课题
      Corresponding author: Guo Qi, guoq@scnu.edu.cn
    • Funds: Project upported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2021A1515012214) and the Science and Technology Program of Guangzhou, China (Grant No. 2019050001)
    [1]

    Wagner W G, Haus H A, Marburger J H 1968 Phys. Rev. 175 256Google Scholar

    [2]

    Snyder A W, Mitchell D J 1997 Science 276 1538Google Scholar

    [3]

    Stegeman G I A, Christodoulides D N, Segev M 2000 IEEE J. Sel. Top. Quantum Electron. 6 1419Google Scholar

    [4]

    曹觉能, 郭旗 2005 物理学报 54 3688Google Scholar

    Cao J N, Guo Q 2005 Acta Phys. Sin. 54 3688Google Scholar

    [5]

    Chen Z G, Segev M, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401Google Scholar

    [6]

    Coutaz J L, Kull M 1991 J. Opt. Soc. Am. B 8 95Google Scholar

    [7]

    Mohanraj P, Sivakumar R, Arulanandham A M S, Gunavathy K V 2022 Opt. Quant. Electron. 54 386Google Scholar

    [8]

    Gatz S, Herrmann J 1991 J. Opt. Soc. Am. B 8 2296Google Scholar

    [9]

    Christian J M, Lundie M J 2017 J. Nonlinear Opt. Phys. 26 1750024Google Scholar

    [10]

    Sahoo A, Mahato D K, Govindarajan A, Sarma A K 2022 Phys. Rev. A 105 063503Google Scholar

    [11]

    Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016612Google Scholar

    [12]

    Edmundson D E, Enns R H 1992 Opt. Lett. 17 586Google Scholar

    [13]

    Edmundson D E, Enns R H 1995 Phys. Rev. A 51 2491Google Scholar

    [14]

    Enns R H, Rangnekar S, Kaplan A E 1987 Phys. Rev. A 35 466Google Scholar

    [15]

    Marburger J H, Dawes E L 1968 Phys. Rev. Lett. 21 556Google Scholar

    [16]

    Dawes E L, Marburger J H 1969 Phys. Rev. 179 862Google Scholar

    [17]

    Stegeman G I, Christodoulides D N, Segev M 2000 J. Sel. Top. Quantum Electron. 6 1419

    [18]

    Peccianti M, De Rossi A, Assantoa G, De Luca A, Umenton C, Khoo I C 2000 Appl. Phys. Lett. 77 7Google Scholar

    [19]

    Peccianti M, Brzdkiewicz K A, Assanto G 2002 Opt. Lett. 27 1460Google Scholar

    [20]

    Peccianti M, Conti C, Assantoa G 2003 J. Nonlinear Opt. Phys. Mater. 12 525Google Scholar

    [21]

    Peccianti M, Assanto G 2012 Phys. Rep. 516 147Google Scholar

    [22]

    Kravets N, Piccardi A, Alberucci A, Buchnev O, Kaczmarek M, Assanto G 2014 Phys. Rev. Lett. 113 023901Google Scholar

    [23]

    Alberucci A, Laudyn U A, Piccardi A, Kwasny M, Klus B, Karpierz M A, Assanto G 2017 Phys. Rev. E 96 012703Google Scholar

    [24]

    Conti C, Peccianti M, Assanto G 2003 Phys. Rev. Lett. 91 073901Google Scholar

    [25]

    Keller H B 1997 Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problemsions of Bifurcation Theory (New York: Academia Press) pp359–384

    [26]

    Yang J K, Lakoba T I 2008 Stud. Appl. Math. 120 265Google Scholar

    [27]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipes: The Art of Scientific Computing (3rd Ed.) (New York: Cambridge University Press) pp1087–1103

    [28]

    Assanto G, Peccianti M 2003 IEEE J. Quantum Electron. 39 13Google Scholar

    [29]

    Deuling H J 1972 Mol. Cryst. Liq. Cryst. 19 123Google Scholar

  • 图 1  正性向列相液晶模型

    Fig. 1.  Positive nematic liquid model

    图 2  (a)液晶盒中心处预偏角$ \theta_{0} $与电压U的关系示意图; (b)预偏角$ \hat\theta $在液晶中的分布

    Fig. 2.  (a) Diagram of the exact Angle $ \theta_{0} $ and voltage U at the center of the liquid crystal cell; (b) distribution of the pre-declination angle $ \hat\theta $ in the liquid crystal

    图 3  (a)中心处线性折射率$ n_0 $$ \theta_{0} $的关系图; (b)中心处饱和非线性折射率$\Delta n_{\rm sat}$$ \theta_{0} $的关系图

    Fig. 3.  (a) Center linear refractive index $ n_0 $ and $ \theta_ {0} $ diagram; (b) center of saturated nonlinear refractive index $\Delta n_ {\rm sat}$ and $ \theta_ {0} $ diagram

    图 4  (a) 1+1维不同预偏角时液晶非线性折射率与光强图; (b) 1+2维不同预偏角时液晶非线性折射率与光强图

    Fig. 4.  (a) Nonlinear refractive index and light intensity map of liquid crystal with different predeclination angles in 1+1 dimension; (b) nonlinear refractive index and light intensity map of liquid crystal with different predeclination angles in 1+2 dimension

    图 5  (a) $ 1+2 $维非线性折射率; (b) $ 1+2 $维非线性折射率x方向与y方向直观对比; (c) $ 1+2 $维孤子功率与液晶中心分子最大偏角$ \theta_{\rm{m}} $的关系图

    Fig. 5.  (a) $ 1+2 $ dimensional nonlinear refractive index; (b) $ 1+2 $ dimensional nonlinear refractive index x direction and y direction intuitive comparison; (c) relationship between $ 1+2 $ dimensional soliton power and the maximum declination angle of liquid crystal central molecule $ \theta_{\rm{m}} $

    图 6  $ 1+1 $维情况下 (a) $ \theta_{0}=20^{\circ} $时孤子功率与束宽关系图, (b) $ \theta_{0}=30^{\circ} $时孤子功率与束宽关系图, (c) $ \theta_{0}=45^{\circ} $时孤子功率与束宽关系图, (d) $ \theta_{0}=60^{\circ} $时孤子功率与束宽关系图, (e) $ \theta_{0}=45^{\circ} $时孤子功率与传播常数 β 关系图

    Fig. 6.  In $ 1+1 $ dimension situation (a) soliton power and beam width when $ \theta_{0}=20^{\circ} $, (b) soliton power and beam width when $ \theta_{0}=30^{\circ} $, (c) soliton power and beam width when $ \theta_{0}=45^{\circ} $, (d) soliton power and beam width when $ \theta_{0}=60^{\circ} $, (e) soliton power and propagation constant when $ \theta_{0}=45^{\circ} $

    图 7  (a) $ 1+2 $x方向不同振幅孤子波形; (b) $ 1+2 $x方向相同束宽归一化孤子波形; (c) $ 1+2 $y方向不同振幅孤子波形; (d) $ 1+2 $y方向相同束宽归一化孤子波形

    Fig. 7.  (a) Soliton waveforms with different amplitudes in the $ 1+2 $ dimensional x direction; (b) soliton waveforms normalized with the same beam width in the $ 1+2 $ dimensional x direction; (c) soliton waveforms with different amplitudes in the $ 1+2 $ dimensional y direction; (d) soliton waveforms normalized with the same beam width in the $ 1+2 $ dimensional y direction

    图 8  $P=1.05\; \text{mW}$, $W=1.30\;\text{μm}$时(a) $ \Delta n $分布; (b) $ \Delta n_x $$ \Delta n_y $对比; (c) $ |A|_x $$ |A|_y $对比. 当$P=113.87\; \text{mW}$, $W=1.30\;\text{μm}$时 (d) $ \Delta n $分布; (e) $ \Delta n_x $$ \Delta n_y $对比; (f) $ |A|_x $$ |A|_y $对比

    Fig. 8.  When $P=1.05\; \text{mW}$, $W=1.30\;\text{μm}$ (a) $ \Delta n $ distribution; (b) compare with $ \Delta n_x $ and $ \Delta n_y $; (c) compare with $ |A|_x $ and $ |A|_y $. When $P=113.87\; \text{mW}$, $W=1.30\;\text{μm}$ (d) $ \Delta n $ distribution; (e) compare with $ \Delta n_x $ and $ \Delta n_y $; (f) compare with $ |A|_x $ and $ |A|_y $

    图 9  $ 1+1 $维情况下孤子传输图 (a) $P=0.17\; \text{mW}$, $W=1.50\; \text{μm}$时的传输图; (d) $P=0.83\; \text{mW}$, $W=1.50\; \text{μm}$时的传输图. $ 1+2 $$P=1.05\; \text{mW}$, $W=1.30\; \text{μm}$时的孤子传输图 (b) x方向传输图; (e) y方向传输图. $ 1+2 $$P=113.87\; \text{mW}, ~ W=l1.30\; \text{μm}$时的孤子传输图 (c) x方向传输图; (f) y方向传输图

    Fig. 9.  Soliton transmission diagram in $ 1+1 $ dimension (a) $P=0.17\; \text{mW}$, $W=1.50\; \text{μm}$ and (d) $P=0.83\; \text{mW}$, $W=1.50\; \text{μm}$ transmission diagram. Soliton transmission diagram in $ 1+2 $ dimensions $P=1.05\; \text{mW}$, $W=1.30\; \text{μm}$ (b) x direction transmission diagram; (e) y direction transmission diagram. Soliton transmission diagram with $ 1+2 $ dimensions $P=113.87\; \text{mW}$, $W=1.30\; \text{μm}$ (c) x direction transmission diagram; (f) y direction transmission diagram

    图 10  $ 1+1 $$P=0.17\; \text{mW}$, $W=1.50\; \text{μm}$情况下加噪声孤子传输图 (a) $ 10{\text{%}} $噪声传输图; (d) $ 10{\text{%}} $噪声传输前(蓝色虚线)后(红色实线) 波形对比图; (b) $ 5{\text{%}} $噪声传输图; (e) $ 5{\text{%}} $噪声传输前后波形对比图; (c) $ 1{\text{%}} $噪声传输图; (f) $ 1{\text{%}} $噪声传输前后波形对比图

    Fig. 10.  $ 1 + 1 $ dimension $P=0.17\; \text{mW}, W=1.50\; \text{μm}$ cases and soliton transmission noise figure: (a) plus $ 10{\text{%}} $ figure noise transmission; (d) plus $ 10{\text{%}} $ before(blue curve) and after (red curve) noise transmission waveform comparison chart; (b) plus $ 5{\text{%}} $ figure noise transmission; (e) plus $ 5{\text{%}} $ before and after noise transmission waveform comparison chart; (c) plus $ 1{\text{%}} $ figure noise transmission; (f) plus $ 1{\text{%}} $ before and after noise transmission waveform comparison chart

    图 11  $ 1+1 $$P=0.83\; \text{mW}$, $W=1.50\; \text{μm}$ 情况下加噪声孤子传输图 (a) $ 10{\text{%}} $噪声传输图; (d) $ 10{\text{%}} $ 噪声传输前后波形对比图; (b) $ 5{\text{%}} $噪声传输图; (e) $ 5{\text{%}} $噪声传输前后波形对比图; (c) $ 1{\text{%}} $ 噪声传输图; (f) $ 1{\text{%}} $ 噪声传输前后波形对比图

    Fig. 11.  $ 1 + 1 $ dimension $P=0.83\; \text{mW}$, $W=1.50\; \text{μm}$ cases and soliton transmission noise figure: (a) plus $ 10{\text{%}} $ figure noise transmission; (d) plus $ 11{\text{%}} $ before and after noise transmission waveform comparison chart; (b) plus $ 5{\text{%}} $ figure noise transmission; (e) plus $ 5{\text{%}} $ before and after noise transmission waveform comparison chart; (c) plus $ 1{\text{%}} $ figure noise transmission; (f) plus $ 1{\text{%}} $ before and after noise transmission waveform comparison chart

    图 12  $ 1+2 $$P=1.05\; \text{mW}, W=1.30\; \text{μm}$情况下加噪声孤子传输图 (a) $ 10{\text{%}} $噪声传输图; (d) $ 10{\text{%}} $噪声传输前后波形对比图; (b) $ 5{\text{%}} $噪声传输图; (e) $ 5{\text{%}} $噪声传输前后波形对比图; (c) $ 1{\text{%}} $噪声传输图; (f) $ 1{\text{%}} $噪声传输前后波形对比图

    Fig. 12.  $ 1 + 2 $ dimension $P=1.05\; \text{mW}, W=1.30\; \text{μm}$ cases and soliton transmission noise figure: (a) plus $ 10{\text{%}} $ figure noise transmission; (d) plus $ 10{\text{%}} $ before and after noise transmission waveform comparison chart; (b) plus $ 5{\text{%}} $ figure noise transmission; (e) plus $ 5{\text{%}} $ before and after noise transmission waveform comparison chart; (c) plus $ 1{\text{%}} $ figure noise transmission; (f) plus $ 1{\text{%}} $ before and after noise transmission waveform comparison chart

    图 13  $ 1+2 $$P=113.87\; \text{mW}, W=1.30\; \text{μm}$情况下加噪声孤子传输 (a) $ 10{\text{%}} $噪声传输图; (d) $ 10{\text{%}} $噪声传输前后波形对比图; (b) $ 5{\text{%}} $噪声传输图; (e) $ 5{\text{%}} $噪声传输前后波形对比图; (c) $ 1{\text{%}} $噪声传输图; (f) $ 1{\text{%}} $噪声传输前后波形对比图

    Fig. 13.  $ 1 + 2 $ dimension $P=113.87\; \text{mW}, W=1.30\; \text{μm}$ cases and soliton transmission noise figure: (a) plus $ 10{\text{%}} $ figure noise transmission; (d) plus $ 10{\text{%}} $ before and after noise transmission waveform comparison chart; (b) plus $ 5{\text{%}} $ figure noise transmission; (e) plus $ 5{\text{%}} $ before and after noise transmission waveform comparison chart; (c) plus $ 1{\text{%}} $ figure noise transmission; (f) plus $ 1{\text{%}} $ before and after noise transmission waveform comparison chart

  • [1]

    Wagner W G, Haus H A, Marburger J H 1968 Phys. Rev. 175 256Google Scholar

    [2]

    Snyder A W, Mitchell D J 1997 Science 276 1538Google Scholar

    [3]

    Stegeman G I A, Christodoulides D N, Segev M 2000 IEEE J. Sel. Top. Quantum Electron. 6 1419Google Scholar

    [4]

    曹觉能, 郭旗 2005 物理学报 54 3688Google Scholar

    Cao J N, Guo Q 2005 Acta Phys. Sin. 54 3688Google Scholar

    [5]

    Chen Z G, Segev M, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401Google Scholar

    [6]

    Coutaz J L, Kull M 1991 J. Opt. Soc. Am. B 8 95Google Scholar

    [7]

    Mohanraj P, Sivakumar R, Arulanandham A M S, Gunavathy K V 2022 Opt. Quant. Electron. 54 386Google Scholar

    [8]

    Gatz S, Herrmann J 1991 J. Opt. Soc. Am. B 8 2296Google Scholar

    [9]

    Christian J M, Lundie M J 2017 J. Nonlinear Opt. Phys. 26 1750024Google Scholar

    [10]

    Sahoo A, Mahato D K, Govindarajan A, Sarma A K 2022 Phys. Rev. A 105 063503Google Scholar

    [11]

    Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016612Google Scholar

    [12]

    Edmundson D E, Enns R H 1992 Opt. Lett. 17 586Google Scholar

    [13]

    Edmundson D E, Enns R H 1995 Phys. Rev. A 51 2491Google Scholar

    [14]

    Enns R H, Rangnekar S, Kaplan A E 1987 Phys. Rev. A 35 466Google Scholar

    [15]

    Marburger J H, Dawes E L 1968 Phys. Rev. Lett. 21 556Google Scholar

    [16]

    Dawes E L, Marburger J H 1969 Phys. Rev. 179 862Google Scholar

    [17]

    Stegeman G I, Christodoulides D N, Segev M 2000 J. Sel. Top. Quantum Electron. 6 1419

    [18]

    Peccianti M, De Rossi A, Assantoa G, De Luca A, Umenton C, Khoo I C 2000 Appl. Phys. Lett. 77 7Google Scholar

    [19]

    Peccianti M, Brzdkiewicz K A, Assanto G 2002 Opt. Lett. 27 1460Google Scholar

    [20]

    Peccianti M, Conti C, Assantoa G 2003 J. Nonlinear Opt. Phys. Mater. 12 525Google Scholar

    [21]

    Peccianti M, Assanto G 2012 Phys. Rep. 516 147Google Scholar

    [22]

    Kravets N, Piccardi A, Alberucci A, Buchnev O, Kaczmarek M, Assanto G 2014 Phys. Rev. Lett. 113 023901Google Scholar

    [23]

    Alberucci A, Laudyn U A, Piccardi A, Kwasny M, Klus B, Karpierz M A, Assanto G 2017 Phys. Rev. E 96 012703Google Scholar

    [24]

    Conti C, Peccianti M, Assanto G 2003 Phys. Rev. Lett. 91 073901Google Scholar

    [25]

    Keller H B 1997 Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problemsions of Bifurcation Theory (New York: Academia Press) pp359–384

    [26]

    Yang J K, Lakoba T I 2008 Stud. Appl. Math. 120 265Google Scholar

    [27]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipes: The Art of Scientific Computing (3rd Ed.) (New York: Cambridge University Press) pp1087–1103

    [28]

    Assanto G, Peccianti M 2003 IEEE J. Quantum Electron. 39 13Google Scholar

    [29]

    Deuling H J 1972 Mol. Cryst. Liq. Cryst. 19 123Google Scholar

  • [1] 王紫凌, 叶家耀, 黄志军, 宋振鹏, 李炳祥, 肖瑞林, 陆延青. 负性向列相液晶电致缺陷的产生与湮灭过程. 物理学报, 2024, 73(5): 056101. doi: 10.7498/aps.73.20231655
    [2] 陈红梅, 李世伟, 李凯靖, 张智勇, 陈浩, 王婷婷. 向列相液晶分子结构与黏度关系研究及BPNN-QSAR模型建立. 物理学报, 2024, 73(6): 066101. doi: 10.7498/aps.73.20231763
    [3] 赵林阳, 贺衎, 张艳芳. 含噪声的三体量子非局域共享的持久性. 物理学报, 2024, 73(21): 210301. doi: 10.7498/aps.73.20241150
    [4] 梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥. 拓扑荷在圆盘状向列相液晶薄膜中的尺寸效应. 物理学报, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [5] 吕月兰, 尹向宝, 杨月, 刘永军, 苑立波. 染料掺杂液晶可调谐光纤荧光光源的研究. 物理学报, 2017, 66(15): 154205. doi: 10.7498/aps.66.154205
    [6] 卢道明. 等距离耦合腔系统中的非局域性. 物理学报, 2016, 65(10): 100301. doi: 10.7498/aps.65.100301
    [7] 尹向宝, 刘永军, 张伶莉, 吕月兰, 霍泊帆, 孙伟民. 大变焦范围电调谐液晶变焦透镜的研究. 物理学报, 2015, 64(18): 184212. doi: 10.7498/aps.64.184212
    [8] 王强, 关宝璐, 刘克, 史国柱, 刘欣, 崔碧峰, 韩军, 李建军, 徐晨. 表面液晶-垂直腔面发射激光器温度特性的研究. 物理学报, 2013, 62(23): 234206. doi: 10.7498/aps.62.234206
    [9] 刘永军, 孙伟民, 刘晓颀, 姚丽双, 鲁兴海, 宣丽. 向列相液晶染料可调谐激光器的研究. 物理学报, 2012, 61(11): 114211. doi: 10.7498/aps.61.114211
    [10] 关荣华. 表面序电极化、挠曲电极化与向列液晶盒饱和点的双稳态. 物理学报, 2011, 60(1): 016105. doi: 10.7498/aps.60.016105
    [11] 唐先柱, 鲁兴海, 彭增辉, 刘永刚, 宣丽. 铁电液晶螺旋结构的理论近似研究. 物理学报, 2010, 59(6): 4001-4007. doi: 10.7498/aps.59.4001
    [12] 张然, 何军, 彭增辉, 宣丽. 向列相液晶nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8)的旋转黏度及其奇偶效应的分子动力学模拟. 物理学报, 2009, 58(8): 5560-5566. doi: 10.7498/aps.58.5560
    [13] 任常愚, 孙秀冬, 裴延波. 向列相液晶中弱光引致各向异性衍射图样的研究. 物理学报, 2009, 58(1): 298-303. doi: 10.7498/aps.58.298.1
    [14] 周本元, 黄晖, 李高翔. 三模高斯态光场非局域性的增强. 物理学报, 2009, 58(3): 1679-1684. doi: 10.7498/aps.58.1679
    [15] 朱叶青, 龙学文, 胡 巍, 曹龙贵, 杨平保, 郭 旗. 非局域程度对向列相液晶中空间光孤子的影响. 物理学报, 2008, 57(4): 2260-2265. doi: 10.7498/aps.57.2260
    [16] 杨平保, 曹龙贵, 胡 巍, 朱叶青, 郭 旗, 杨湘波. 向列相液晶中强非局域空间光孤子的相互作用. 物理学报, 2008, 57(1): 285-290. doi: 10.7498/aps.57.285
    [17] 龙学文, 胡 巍, 张 涛, 郭 旗, 兰 胜, 高喜存. 向列相液晶中强非局域空间光孤子传输的理论研究. 物理学报, 2007, 56(3): 1397-1403. doi: 10.7498/aps.56.1397
    [18] 展凯云, 裴延波, 侯春风. 向列相液晶中空间光孤子的观测. 物理学报, 2006, 55(9): 4686-4690. doi: 10.7498/aps.55.4686
    [19] 刘 红, 王 慧. 双轴性向列相液晶的相变理论. 物理学报, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [20] 陈园园, 王奇, 施解龙. 非相干多分量空间双稳态孤子. 物理学报, 2004, 53(4): 1070-1075. doi: 10.7498/aps.53.1070
计量
  • 文章访问数:  3654
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2023-01-18
  • 上网日期:  2023-02-09
  • 刊出日期:  2023-04-05

/

返回文章
返回