搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si3N4光子晶体平板中的连续域中的准束缚态表征及调控

张昀昊 何霄 应嘉禾 刘冬林 陶广益 戴宇琛 党郅博 方哲宇

引用本文:
Citation:

Si3N4光子晶体平板中的连续域中的准束缚态表征及调控

张昀昊, 何霄, 应嘉禾, 刘冬林, 陶广益, 戴宇琛, 党郅博, 方哲宇

Characterization and control of quasi-bound states in the continuous in Si3N4 photonic crystals

ZHANG Yunhao, HE Xiao, YING Jiahe, LIU Donglin, TAO Guangyi, DAI Yuchen, DANG Zhibo, FANG Zheyu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 对于光子的局域,在基础研究和技术应用领域具有重要意义。光子晶体中的连续域中的束缚态(Bound states in the continuum,BICs)为光子的局域提供了新的机制。然而光子晶体在制备过程中会不可避免的引入误差和缺陷,动量空间表征可以分析加工误差和缺陷对于光子晶体能带特性的影响,进而指导光子晶体器件的设计和制备。本文设计了可见光波段的光子晶体,通过动量空间表征观测到了连续域中的准束缚态(quasi-BIC),从而在垂直方向上实现了对光子的有效局域,并通过调整结构参数,实现了对光子晶体动量空间的特征调控。进一步设计不同周期光子晶体的横向异质结构,利用两者的能带套嵌实现了对光子的横向局域,以此制备了品质因子与模式体积之比达到6×1014 cm-3的高品质微腔。本文的研究对于光子晶体的设计以及增强光与物质相互作用具有重要意义。
    Localization of photons holds significant implications in both fundamental research and technological applications. Bound states in the continuum (BICs) in photonic crystal provide a novel mechanism for effective photon localization. However, fabrication imperfections and defects are inevitable during the manufacturing process of photonic crystals. Momentum-space characterization serves as a powerful tool to analyze how such processing variations affect the photonic band structure, thereby informing the design and fabrication of photonic crystal devices. This paper designs a photonic crystal in the visible light band and analyzes its band structure through FDTD simulation. The high symmetry at the momentum space Γ point leads to a symmetry mismatch between the internal mode of the photonic crystal and the external propagation mode (radiation continuum), so that bound states with infinite lifetime appear above the light, realizing localization in the vertical direction. At the same time, this paper measures the angle-resolved photoluminescence (PL) spectrum of the photonic crystal through the self-built angle-resolved optical path. The weak photoluminescence of the Si3N4 substrate is coupled with the photonic crystal mode to measure the photonic crystal band. It can be observed that the band structure is consistent with the simulation results. At the same time, the intensity of the TE1 band near the Γ point is significantly weakened compared to the intensity at the position away from the Γ point, but it is not completely eliminated. This shows that processing errors and defects will destroy the symmetry of the structure, causing the BIC to evolve into the quasi-BIC. The quasi-BIC mode achieves effective localization of photons in the vertical direction near the Γ point. Furthermore, a heterostructure of different periodic photonic crystals was designed to attain lateral photon localization by utilizing the band nesting of the two. In this way, this study culminated in the development of high-quality microcavities with an impressive quality factor to mode volume ratio of 6×1014 cm-3, and achieved characteristic regulation of the momentum space of the photonic crystal by adjusting the structural parameters. This research is of great significant for the design of photonic crystals and the interaction between light and matter.
  • [1]

    Genack A Z, Garcia N 1991Phys. Rev. Lett. 66 2064

    [2]

    von Neumann J, Wigner E P. 1929Phys. Z. 30 465

    [3]

    Fan S, Joannopoulos J D 2002Phys. Rev. B 65 235112

    [4]

    Gomis-Bresco J, Artigas D, Torner L 2017Nat. Photonics 11 232

    [5]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011Phys. Rev. Lett. 107 183901

    [6]

    Friedrich H, Wintgen D 1985Phys. Rev. A 32 3231

    [7]

    Zhang J M, Braak D, Kollar M 2012Phys. Rev. Lett. 109 116405

    [8]

    Lim T C, Farnell G W 1969The Journal of the Acoustical Society of America 45845

    [9]

    Porter R, Evans D V 2005Wave Motion 43 29

    [10]

    Joannopoulos J D, Villeneuve P R, Fan S 1997Nature 386 143

    [11]

    Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022Laser & Photonics Reviews 16 2100300

    [12]

    Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljačić M 2013Nature 499188

    [13]

    Jin J, Yin X, Ni L, Soljačić M, Zhen B, Peng C 2019Nature 574 501

    [14]

    Marinica D C, Borisov A G, Shabanov S V 2008Phys. Rev. Lett. 100 183902

    [15]

    Molina M I, Miroshnichenko A E, Kivshar Y S 2012Phys. Rev. Lett. 108 070401

    [16]

    Hirose K, Liang Y, Kurosaka Y, Watanabe A, Sugiyama T, Noda S 2014Nat. Photonics 8 406

    [17]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017Nature 541 196

    [18]

    Hwang M S, Lee H C, Kim K H, Jeong K Y, Kwon S H, Koshelev K, Kivshar Y, Park H G 2021Nat. Commun. 12 4135

    [19]

    Yan M, Sun K, Ning T Y, Zhao L N, Ren Y Y, Huo Y Y 2023Acta Phys. Sin. 72 91(in Chinese)[闫梦,孙珂,宁廷银,赵丽娜,任莹莹,霍燕燕2023物理学报72 91]

    [20]

    Iwahashi S, Kurosaka Y, Sakai K, Kitamura K, Takayama N, Noda S 2011 Optics Express 19 11963

    [21]

    Kitamura K, Sakai K, Takayama N, Nishimoto M, Noda S 2012 Optics Letters 37 2421

    [22]

    Yang J L, Shi A Q, Peng Y C, Peng P, Liu J J 2024Chin. Phys. B 33 306.

    [23]

    Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018Phys. Rev. Lett. 121 193903.

    [24]

    Wang D, Xiong A Y, Zhang J Q, She Z D, Kang X F, Zhu Y, Ghosh S, Xiong Q H 2024Chin. Phys. B 33 197.

    [25]

    Xiao Z S, Liu Y X, Bao Z, Wang L H, Wu B, Wang G, Wang H, Ren X G, Huang Z X 2024Acta Phys. Sin. 73 268(in Chinese)[夏兆生,刘宇行,包正,王丽华,吴博,王刚,王辉,任信钢,黄志祥2024物理学报73 268]

    [26]

    Wu F, Wu J, Guo Z, Jiang H, Sun Y, Li Y, Ren J, Chen H, 2019Phys. Rev. Appl. 12 014028.

    [27]

    Wu F, Qi X, Qin M, Luo M, Long Y, Wu J, Sun Y, Jiang H, Liu T, Xiao S, Chen H 2024 Phys. Rev. B 109 085436.

    [28]

    Wei M, Long Y, Wu F, Liu G G, Zhang B 2025 Sci. Bull. 70 882.

    [29]

    Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M 2014Phys. Rev. Lett. 113 257401

    [30]

    Men H, Lee K Y K, Freund R M, Peraire J, Johnson S G 2014Optics Express 22 22632

    [31]

    Lee J, Zhen B, Chua S L, Qiu W, Joannopoulos J D, Soljačić M, Shapira O 2012Phys. Rev. Lett. 109 067401

    [32]

    Perczel J, Borregaard J, Chang D E, Yelin S F, Lukin M D 2020 Phys. Rev. Lett. 124 083603

    [33]

    Ge X, Minkov M, Fan S, Li X, Zhou W 2019npj 2D Materials and Applications 3 16

    [34]

    Wu M, Ding L, Sabatini R P, Sagar L K, Bappi G, Paniagua-Domínguez R, Sargent E H, Kuznetsov A I 2021Nano Lett. 21 9754

    [35]

    Sun S, Kim H, Luo Z, Solomon G S, Waks E 2018Science 361 57

    [36]

    Carletti L, Koshelev K, De Angelis C, Kivshar Y 2018Phys. Rev. Lett. 121 033903

    [37]

    Bernhardt N, Koshelev K, White S J U, Meng K W C, Fröch J E, Kim S, Tran T T, Choi D-Y, Kivshar Y, Solntsev A S 2020Nano Lett. 20 5309

    [38]

    Chen Z, Yin X, Jin J, Zheng Z, Zhang Z, Wang F, He L, Zhen B, Peng C 2022Sci. Bull. 67 359

  • [1] 杨斐, 张炳林, 盛苗苗, 金露凡, 姚建铨. 液晶驱动高Q值准连续域束缚态动态调谐. 物理学报, doi: 10.7498/aps.74.20250337
    [2] 纪雨萱, 张明楷, 李妍. 二维光子晶体中的双波段半狄拉克锥与零折射率材料. 物理学报, doi: 10.7498/aps.73.20240800
    [3] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, doi: 10.7498/aps.71.20220353
    [4] 周铭杰, 谭海云, 周岩, 诸葛兰剑, 吴雪梅. 一种基于束缚态的可调等离子体光子晶体窄带滤波器. 物理学报, doi: 10.7498/aps.70.20210241
    [5] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, doi: 10.7498/aps.69.20191962
    [6] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, doi: 10.7498/aps.69.20200415
    [7] 王海啸, 徐林, 蒋建华. Dirac光子晶体. 物理学报, doi: 10.7498/aps.66.220302
    [8] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, doi: 10.7498/aps.66.227802
    [9] 朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东. 多系双局域态光子晶体的可调谐滤波特性分析. 物理学报, doi: 10.7498/aps.64.034209
    [10] 陈颖, 范卉青, 卢波. 带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理. 物理学报, doi: 10.7498/aps.63.244207
    [11] 李乾利, 温廷敦, 许丽萍, 王志斌. 单轴应力对一维镜像光子晶体光子局域态透射峰的影响. 物理学报, doi: 10.7498/aps.62.184212
    [12] 章海锋, 马力, 刘少斌. 磁化等离子体光子晶体缺陷态的研究. 物理学报, doi: 10.7498/aps.58.1071
    [13] 刘 靖, 孙军强, 黄德修, 黄重庆, 吴 铭. 渐变折射率光量子阱对束缚态能级的调整. 物理学报, doi: 10.7498/aps.56.2281
    [14] 沈晓鹏, 韩 奎, 沈义峰, 李海鹏, 肖正伟, 郑 健. 二维光子晶体中与电磁波偏振态无关的自准直. 物理学报, doi: 10.7498/aps.55.2760
    [15] 童元伟, 张冶文, 赫 丽, 李宏强, 陈 鸿. 用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构. 物理学报, doi: 10.7498/aps.55.935
    [16] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙. 物理学报, doi: 10.7498/aps.54.411
    [17] 李蓉, 任坤, 任晓斌, 周静, 刘大禾. 一维光子晶体带隙结构对不同偏振态的角度和波长响应. 物理学报, doi: 10.7498/aps.53.2520
    [18] 刘晓东, 王义全, 许兴胜, 程丙英, 张道中. 具有态守恒赝隙的光子晶体中两能级原子自发辐射的增强与抑制. 物理学报, doi: 10.7498/aps.53.125
    [19] 刘晓东, 李曙光, 许兴胜, 王义全, 程丙英, 张道中. 用不同密度分布的发光分子探测光子晶体的全态密度. 物理学报, doi: 10.7498/aps.53.132
    [20] 王霞, 许剑锋, 苏慧敏, 何拥军, 江绍基, 汪河洲, 曾兆华, 陈用烈. 亚微米结构的可见光聚合全息制作. 物理学报, doi: 10.7498/aps.51.527
计量
  • 文章访问数:  68
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-24

/

返回文章
返回