-
对于光子的局域,在基础研究和技术应用领域具有重要意义。光子晶体中的连续域中的束缚态(Bound states in the continuum,BICs)为光子的局域提供了新的机制。然而光子晶体在制备过程中会不可避免的引入误差和缺陷,动量空间表征可以分析加工误差和缺陷对于光子晶体能带特性的影响,进而指导光子晶体器件的设计和制备。本文设计了可见光波段的光子晶体,通过动量空间表征观测到了连续域中的准束缚态(quasi-BIC),从而在垂直方向上实现了对光子的有效局域,并通过调整结构参数,实现了对光子晶体动量空间的特征调控。进一步设计不同周期光子晶体的横向异质结构,利用两者的能带套嵌实现了对光子的横向局域,以此制备了品质因子与模式体积之比达到6×1014 cm-3的高品质微腔。本文的研究对于光子晶体的设计以及增强光与物质相互作用具有重要意义。Localization of photons holds significant implications in both fundamental research and technological applications. Bound states in the continuum (BICs) in photonic crystal provide a novel mechanism for effective photon localization. However, fabrication imperfections and defects are inevitable during the manufacturing process of photonic crystals. Momentum-space characterization serves as a powerful tool to analyze how such processing variations affect the photonic band structure, thereby informing the design and fabrication of photonic crystal devices. This paper designs a photonic crystal in the visible light band and analyzes its band structure through FDTD simulation. The high symmetry at the momentum space Γ point leads to a symmetry mismatch between the internal mode of the photonic crystal and the external propagation mode (radiation continuum), so that bound states with infinite lifetime appear above the light, realizing localization in the vertical direction. At the same time, this paper measures the angle-resolved photoluminescence (PL) spectrum of the photonic crystal through the self-built angle-resolved optical path. The weak photoluminescence of the Si3N4 substrate is coupled with the photonic crystal mode to measure the photonic crystal band. It can be observed that the band structure is consistent with the simulation results. At the same time, the intensity of the TE1 band near the Γ point is significantly weakened compared to the intensity at the position away from the Γ point, but it is not completely eliminated. This shows that processing errors and defects will destroy the symmetry of the structure, causing the BIC to evolve into the quasi-BIC. The quasi-BIC mode achieves effective localization of photons in the vertical direction near the Γ point. Furthermore, a heterostructure of different periodic photonic crystals was designed to attain lateral photon localization by utilizing the band nesting of the two. In this way, this study culminated in the development of high-quality microcavities with an impressive quality factor to mode volume ratio of 6×1014 cm-3, and achieved characteristic regulation of the momentum space of the photonic crystal by adjusting the structural parameters. This research is of great significant for the design of photonic crystals and the interaction between light and matter.
-
Keywords:
- Photonic crystals /
- Bound states in the continuation domain /
- Momentum space /
- Visible wavelengths
-
[1] Genack A Z, Garcia N 1991Phys. Rev. Lett. 66 2064
[2] von Neumann J, Wigner E P. 1929Phys. Z. 30 465
[3] Fan S, Joannopoulos J D 2002Phys. Rev. B 65 235112
[4] Gomis-Bresco J, Artigas D, Torner L 2017Nat. Photonics 11 232
[5] Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011Phys. Rev. Lett. 107 183901
[6] Friedrich H, Wintgen D 1985Phys. Rev. A 32 3231
[7] Zhang J M, Braak D, Kollar M 2012Phys. Rev. Lett. 109 116405
[8] Lim T C, Farnell G W 1969The Journal of the Acoustical Society of America 45845
[9] Porter R, Evans D V 2005Wave Motion 43 29
[10] Joannopoulos J D, Villeneuve P R, Fan S 1997Nature 386 143
[11] Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022Laser & Photonics Reviews 16 2100300
[12] Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljačić M 2013Nature 499188
[13] Jin J, Yin X, Ni L, Soljačić M, Zhen B, Peng C 2019Nature 574 501
[14] Marinica D C, Borisov A G, Shabanov S V 2008Phys. Rev. Lett. 100 183902
[15] Molina M I, Miroshnichenko A E, Kivshar Y S 2012Phys. Rev. Lett. 108 070401
[16] Hirose K, Liang Y, Kurosaka Y, Watanabe A, Sugiyama T, Noda S 2014Nat. Photonics 8 406
[17] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017Nature 541 196
[18] Hwang M S, Lee H C, Kim K H, Jeong K Y, Kwon S H, Koshelev K, Kivshar Y, Park H G 2021Nat. Commun. 12 4135
[19] Yan M, Sun K, Ning T Y, Zhao L N, Ren Y Y, Huo Y Y 2023Acta Phys. Sin. 72 91(in Chinese)[闫梦,孙珂,宁廷银,赵丽娜,任莹莹,霍燕燕2023物理学报72 91]
[20] Iwahashi S, Kurosaka Y, Sakai K, Kitamura K, Takayama N, Noda S 2011 Optics Express 19 11963
[21] Kitamura K, Sakai K, Takayama N, Nishimoto M, Noda S 2012 Optics Letters 37 2421
[22] Yang J L, Shi A Q, Peng Y C, Peng P, Liu J J 2024Chin. Phys. B 33 306.
[23] Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018Phys. Rev. Lett. 121 193903.
[24] Wang D, Xiong A Y, Zhang J Q, She Z D, Kang X F, Zhu Y, Ghosh S, Xiong Q H 2024Chin. Phys. B 33 197.
[25] Xiao Z S, Liu Y X, Bao Z, Wang L H, Wu B, Wang G, Wang H, Ren X G, Huang Z X 2024Acta Phys. Sin. 73 268(in Chinese)[夏兆生,刘宇行,包正,王丽华,吴博,王刚,王辉,任信钢,黄志祥2024物理学报73 268]
[26] Wu F, Wu J, Guo Z, Jiang H, Sun Y, Li Y, Ren J, Chen H, 2019Phys. Rev. Appl. 12 014028.
[27] Wu F, Qi X, Qin M, Luo M, Long Y, Wu J, Sun Y, Jiang H, Liu T, Xiao S, Chen H 2024 Phys. Rev. B 109 085436.
[28] Wei M, Long Y, Wu F, Liu G G, Zhang B 2025 Sci. Bull. 70 882.
[29] Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M 2014Phys. Rev. Lett. 113 257401
[30] Men H, Lee K Y K, Freund R M, Peraire J, Johnson S G 2014Optics Express 22 22632
[31] Lee J, Zhen B, Chua S L, Qiu W, Joannopoulos J D, Soljačić M, Shapira O 2012Phys. Rev. Lett. 109 067401
[32] Perczel J, Borregaard J, Chang D E, Yelin S F, Lukin M D 2020 Phys. Rev. Lett. 124 083603
[33] Ge X, Minkov M, Fan S, Li X, Zhou W 2019npj 2D Materials and Applications 3 16
[34] Wu M, Ding L, Sabatini R P, Sagar L K, Bappi G, Paniagua-Domínguez R, Sargent E H, Kuznetsov A I 2021Nano Lett. 21 9754
[35] Sun S, Kim H, Luo Z, Solomon G S, Waks E 2018Science 361 57
[36] Carletti L, Koshelev K, De Angelis C, Kivshar Y 2018Phys. Rev. Lett. 121 033903
[37] Bernhardt N, Koshelev K, White S J U, Meng K W C, Fröch J E, Kim S, Tran T T, Choi D-Y, Kivshar Y, Solntsev A S 2020Nano Lett. 20 5309
[38] Chen Z, Yin X, Jin J, Zheng Z, Zhang Z, Wang F, He L, Zhen B, Peng C 2022Sci. Bull. 67 359
计量
- 文章访问数: 68
- PDF下载量: 2
- 被引次数: 0