搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

啁啾脉冲激发的瞬态双光子跃迁探究

任立庆 杨易达 魏迎春

引用本文:
Citation:

啁啾脉冲激发的瞬态双光子跃迁探究

任立庆, 杨易达, 魏迎春

Exploration of transient two-photon transitions excited by chirped pulse

Ren Li-Qing, Yang Yi-Da, Wei Ying-Chun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 在强场激发的一般情况下,斯塔克效应对于瞬态双光子跃迁具有重要影响,且该过程的解析描述具有很大挑战。本文采用解析求解与数值模拟相结合的方法,系统地研究了弱场和强场啁啾脉冲激发的瞬态双光子跃迁过程,揭示了光场强度、啁啾因子、失谐量等参数对双光子跃迁几率时域演化的重要影响。首先,本文利用二阶微扰理论得到了双光子时域跃迁几率振幅的近似解析解表达式。该解析解表明,弱场激发的瞬态瞬态双光子跃迁过程类似于菲涅耳直边衍射效应。随着光场强度的增强,斯塔克效应对双光子跃迁的影响也随之增强。其次,本文通过一系列近似处理得到了强场作用下薛定谔方程的近似解析解。解析解表明,强场斯塔克效应引起能级分裂使得双光子跃迁几率时域的对称性遭到了破坏,其频域过程类似于“双缝干涉”效应。研究结果表明,强场激发时布居转移效率与光场强度具有重要关系,而啁啾因子不仅可以调节布居转移效率和时间位置,还可以改变布居几率在时域的振荡频率。这对于强场激发的布居几率时域演化描述提供了新思路,并对双光子显微成像研究提供了科学依据。
    In general cases of strong field excitation, the Stark effect has a significant impact on transient two-photon transitions, and the analytic description of this process is quite challenging. By combining analytical solutions and numerical simulations, we systematically study the transient two-photon transition processes excited by weak and strong chirped pulses, revealing the important influences of parameters such as light field intensity, chirp factor, and detuning on the time-domain evolution of two-photon transition probabilities. Firstly, we derive an approximate analytical expression for the amplitude of the time-domain two-photon transition probability using second-order perturbation theory. This analytical solution indicates that the transient two-photon transition process under weak field excitation is similar to the Fresnel rectangular edge diffraction effect. As the light field intensity increases, the influence of the Stark effect on two-photon transitions also intensifies. Secondly, through a series of approximations, we obtain the approximate analytical solutions of the Schrödinger equation under strong field interactions. The analytical solutions show that the strong field Stark effect induces energy level splitting, which disrupts the symmetry of the time-domain two-photon transition probabilities distribution, and its frequency domain process is similar to the'double-slit interference' effect. The research results indicate that the efficiency of population transfer during strong field excitation is significantly related to the light field intensity, while the chirp factor can not only regulate the efficiency and time position of population transfer but can also alter the oscillation frequency of the population probability in the time domain. This provides new insights for the description of the time-domain evolution of the population probability_under strong field excitation and offers a scientific basis for research in two-photon microscopy.
  • [1]

    Boutabba N, Eleuch H 2020Results Phys. 19 103421

    [2]

    Shapiro M, Brumer P 2003 Principles of the Quantum Control of Molecular Processes (New York:Wiley Press)

    [3]

    Warren W S, Rabitz H, Mahleh D 1993Science 259 1581

    [4]

    Li Y G, Ren L Q, Ma R Q, Qiu X, Liu J, Fan R, Fu Z X 2009Science. China G 39(4) 600(in Chinese)[李永放, 任立庆, 马瑞琼, 仇旭,刘娟,樊荣,付振兴2009中国科学G 39(4) 600]

    [5]

    Li Y F, Ren L Q, Ma R Q, Fan R, Liu J 2010 Acta phys. Sin. 59(3) 1671(in Chinese)[李永放, 任立庆, 马瑞琼, 樊荣, 刘娟物理学报201059(3) 1671]

    [6]

    Ren L Q, Li Y F, Zhang M H, Xu K, Wumai A 2011Science China 41 756(in Chinese)[任立庆, 李永放, 张敏华, 许康, 阿布力米提·吾买中国科学201141 756]

    [7]

    Goswami D 2003Phys. Rep. 374 385

    [8]

    Rabitz H, Vivie-Riedle R D, Motzkus M, Kompa K 2000Science 288 824

    [9]

    Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M, Gerber G 1998Science 282 919

    [10]

    Clow S D, Trallero-Herrero C, Bergeman T, Weinacht T 2008Phys. Rev. Lett. 100 233603

    [11]

    Silberberg Y 2009Annu. Rev. Phys. Chem. 60 277

    [12]

    Lim J, Lee H, Kim J, Lee S, Ahn J 2011 Phys. Rev. A 83 053429

    [13]

    Allgaier M, Ansari V, Donohue J M, Eigner C, Quiring V, Ricken R, Brecht B, Silberhorn C 2020Phys. Rev. A 101 043819

    [14]

    Ding X, Heberle D, Harrington K, Flemens N, Chang W, Birks T A, Moses J 2020Phys. Rev. Lett. 124 153902

    [15]

    Li Y, Seddighi F, Porat G 2024Phys. Rev. Applied 22 014026

    [16]

    Dutt A, Mohanty A, Gaeta A L Lipson M 2024Nat. Rev. Mater. 9 321

    [17]

    Meshulach D, Silberberg Y 1998Nature (London) 396 239

    [18]

    Dudovich N2005Phys. Rev. Lett. 94 083002

    [19]

    Lee S, Lim J, Park C Y, Ahn J 2009Opt. Express 17(9) 7648

    [20]

    Chatel B, Degert J, Girard B 2004Phys. Rev. A 70 053414

    [21]

    Tagliamonti V, Kaufman B, Zhao A, Rozgonyi T, Marquetand P, Weinacht T 2017 Phys. Rev. A 96 021401

    [22]

    Trallero-Herrero C, Cardza D, Cohen J, Weinacht T 2005Phys. Rev. A 71 013423

    [23]

    Trallero-Herrero C, Spanner M, Weinacht T 2008Phys. Rev. A 74 051403

    [24]

    Trallero-Herrero C, Cohen J, Weinacht T C 2006Phys. Rev. Lett. 96 063603

    [25]

    Gandman A, Chuntonov L, Rybak L, Amitay Z 2007Phys. Rev. A 75 031401

  • [1] 李翰楠, 彭滟. 激光脉冲啁啾影响双色激光场诱导气体产生太赫兹辐射特性的理论研究. 物理学报, doi: 10.7498/aps.73.20231806
    [2] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微扰理论将弹簧振子模型退化为耦合模理论. 物理学报, doi: 10.7498/aps.69.20191505
    [3] 喻益湘, 宋凝芳, 刘伍明. Lipkin-Meshkov-Glick模型中的能级劈裂与宇称振荡研究. 物理学报, doi: 10.7498/aps.67.20181069
    [4] 王金霞, 师应龙, 张登红, 颉录有, 董晨钟. 类锂离子双电子复合过程中辐射光子角分布和极化特性的理论研究. 物理学报, doi: 10.7498/aps.62.233401
    [5] 王凯, 龙华, 付明, 张莉超, 杨光, 陆培祥. Au纳米颗粒阵列中双光子吸收的饱和过程. 物理学报, doi: 10.7498/aps.60.034209
    [6] 崔昊杨, 李志锋, 马法君, 陈效双, 陆卫. 硅的间接跃迁双光子吸收系数谱. 物理学报, doi: 10.7498/aps.59.7055
    [7] 杨 雄, 童朝阳, 匡乐满. 利用双光子过程实现量子信息转移. 物理学报, doi: 10.7498/aps.57.1689
    [8] 潘留仙, 俞慧友, 颜家壬. KdV孤子的含时微扰理论. 物理学报, doi: 10.7498/aps.57.1316
    [9] 潘留仙, 左伟明, 颜家壬. Landau-Ginzburg-Higgs方程的微扰理论. 物理学报, doi: 10.7498/aps.54.1
    [10] 刘天贵, 颜家壬, 潘留仙. TDGL方程的微扰理论. 物理学报, doi: 10.7498/aps.51.6
    [11] 赵永明, 颜家壬. MKdV方程的微扰理论. 物理学报, doi: 10.7498/aps.48.1976
    [12] 唐志列, 林理忠. 双光子光声效应理论. 物理学报, doi: 10.7498/aps.43.211
    [13] 汪志诚. 双光子激光器的量子理论. 物理学报, doi: 10.7498/aps.40.1259-2
    [14] 文根旺. 量子激发态最陡下降微扰理论. 物理学报, doi: 10.7498/aps.40.1388
    [15] 鲍振川;夏慧荣;潘佐棣;郑一善. 偏振三光子跃迁讯号的理论计算. 物理学报, doi: 10.7498/aps.38.1225
    [16] 文根旺. 简并基态最陡下降微扰理论. 物理学报, doi: 10.7498/aps.37.1981
    [17] 李福利. 双光子光学多稳态理论. 物理学报, doi: 10.7498/aps.32.71
    [18] 郑兆勃. 无限次微扰理论的分块矩阵法证明. 物理学报, doi: 10.7498/aps.30.866
    [19] 程路. 衍射问题一级近似的微扰理论. 物理学报, doi: 10.7498/aps.22.223
    [20] 陈式刚. 强磁场下横向输运过程的微扰理论. 物理学报, doi: 10.7498/aps.20.579
计量
  • 文章访问数:  37
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-24

/

返回文章
返回