搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用久期微扰理论将弹簧振子模型退化为耦合模理论

朱存远 李朝刚 方泉 汪茂胜 彭雪城 黄万霞

引用本文:
Citation:

用久期微扰理论将弹簧振子模型退化为耦合模理论

朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞

The spring oscillator model degenerated into the coupled-mode theory by using secular perturbation theory

Zhu Cun-Yuan, Li Chao-Gang, Fang Quan, Wang Mao-Sheng, Peng Xue-Cheng, Huang Wan-Xia
PDF
HTML
导出引用
  • 尽管耦合模理论在过去几十年内已经被广泛研究, 但它的理论来源还是困扰着广大研究者. 在这里, 基于久期微扰理论, 将经典弹簧振子模型退化为耦合模理论, 并将该理论用于解释音叉耦合的实验现象. 研究表明这种方法将耦合模理论中每一项的系数都与经典力学中的相关物理量建立关联, 且理论和实验结果符合得很好. 该研究为耦合模理论中每一项的来源提供了一种较严谨的推导方法, 在线性耦合体系的理论研究方面有一定的指导意义.
    In the past few decades, although coupled-mode theory (CMT) has been extensively studied in quantum system, atomic system, plasmon system, circuit system, and so on, the theoretical origin is still plaguing many researchers. In the book of waves and fields in optoelectronics, the second-order differential equations of the simplest LC simple harmonic vibration circuit was turned into the first-order differential equation using the method of variable substitution by Haus. However, there is not loss in the simplest LC simple harmonic vibration circuit, loss term is introduced by qualitative analysis. Although this method of dealing with problems has no problems from a physical point of view, it is not rigorous enough from a mathematical point of view. In this paper, based on the secular perturbation theory, the well-known spring oscillator model is degenerated into two-mode CMT. Starting from the second-order differential equations of the spring oscillator model, the secular perturbation theory is used to obtain first order differential equations of two-mode CMT. The results show the relationships between each term’s coefficients in two-mode CMT and the physical quantities in Classical Mechanics are established by using the secular perturbation theory. Through solving two-mode coupled-mode equations, the energy transfer efficiency has been obtained. To verify the correctness of two-mode CMT, we design a coupled tuning fork mechanical vibration system, which consists of two experimental instruments to provide driving force and receive signals, two tuning forks and springs. The amplitude spectra are measured by an experimental instrument of forced vibration and resonance (HZDH4615), which provides a periodic driving signal for the tuning fork. To clarify the mechanism of the spectra, the numerical fitting has been performed by mathematica software based on the energy transfer efficiency. Theoretically, the obtained fitting parameters can also evaluate some important attributes of the system. The theoretical results are in close correspondence with the experiment. That is to say, two-mode CMT is suitable for classical vibration system.This study provides a more rigorous derivation for each term’s origin in two-mode CMT, and has guiding significance in the theoretical research of linear coupled vibration system.
      通信作者: 黄万霞, kate@mail.ahnu.edu.cn
    • 基金项目: 国家级-国家自然科学基金面上项目(11304002)
      Corresponding author: Huang Wan-Xia, kate@mail.ahnu.edu.cn
    [1]

    Garrido A C L, Martinez M A G, Nussenzveig P 2002 Am. J. Phys. 70 37

    [2]

    朱旭鹏, 张轼, 石惠民, 陈智全, 全军, 薛书文, 张军, 段辉高 2019 物理学报 68 247301Google Scholar

    Zhu X P, Zhang S, Shi H M, Chen Z Q, Quan J, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 247301Google Scholar

    [3]

    朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 物理学报 68 247304

    Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 247304

    [4]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [5]

    Heylman K D, Thakkar N, Horak E H, Quillin S C, Goldsmith R H 2016 Nat. Photonics 10 788Google Scholar

    [6]

    LiuZV, Li J, Liu Z, Li W, Li J, Gu C, L iZ 2017 Sci. Rep. 7 8010Google Scholar

    [7]

    Suh W, Wang Z, Fan S 2004 IEEE J. Quantum Electron. 40 1511Google Scholar

    [8]

    Fan S, Suh W, Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569Google Scholar

    [9]

    Marcuse D 1971 The Bell System Technical Journal 50 1791Google Scholar

    [10]

    Snyder A W 1970 IEEE Trans. Microwave Theory Tech. 18 383Google Scholar

    [11]

    Hardy A, Streifer W 1985 J. Lightwave Technol. LT-3 1135

    [12]

    McIntyre P D, Snyder A W 1973 J. Opt. Soc. Am. 63 1518Google Scholar

    [13]

    Butler J K, Ackley D E, Botez D 1984 Appl. Phys. Lett. 44 293Google Scholar

    [14]

    Feng L, Xu YL, William S F, Lu M H, José E B O, Vilson R A, Chen Y F, Axel S 2012 Nat. Mater. 12 108

    [15]

    Hossein H, Absar U H, Steffen W, Hipolito GG, Ramy EG, Demetrios N C, Mercedeh K 2017 Nature 548 187Google Scholar

    [16]

    Mikhail F L, Mikhail V R, Alexander N P, Yuri S K 2017 Nat. Photonics 11 543Google Scholar

    [17]

    Miri M A, Andrea A 2019 Science 363 42

    [18]

    SafaviNaeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [19]

    Andersen D R, Datta S, Gunshor R L 1983 J. Appl. Phys. 54 5608Google Scholar

    [20]

    Stegeman G I, Seaton C T 1985 J. Appl. Phys. 58 R57Google Scholar

    [21]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [22]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [23]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljačić M 2007 Science 317 83Google Scholar

    [24]

    Zhang F, Hackworth S A, Fu W, Li C, Mao Z, Sun M 2011 IEEE Trans. Magn. 47 1478Google Scholar

    [25]

    Karalis A, Joannopoulos J D, Soljačić M 2008 Ann. Phys. 323 34Google Scholar

    [26]

    Wang B, Yerazunis W, Teo K H 2013 Proc. IEEE 101 1359Google Scholar

    [27]

    Haus H A 1984 Waves and Fields in Optoelectronics (New Jersey: Prentice-Hall) pp197–217

    [28]

    Huang W X, Wang Q J, Yin X G, Huang C P, Huang H, Wang Y M, Zhu Y Y 2011 J. Appl. Phys. 109 114310Google Scholar

    [29]

    Karabalin R, Cross M, Roukes M 2009 Phys. Rev. B 79 165309Google Scholar

    [30]

    Villanueva L, Kenig E, Karabalin R, Matheny M, Lifshitz R, Cross M, Roukes M 2013 Phys. Rev.Lett. 110 177208Google Scholar

  • 图 1  双模耦合体系的相关参数示意图 (a) 弹簧振子模型; (b) CMT模型

    Fig. 1.  Parameters’ sketch of two-mode coupled system: (a) Spring oscillator model; (b) CMT model.

    图 2  (a)两音叉耦合实验装置图; (b) 实验系统工作原理的示意图; (c)音叉单独振动时的实验谱和拟合谱; (d) 双音叉耦合下的实验谱和拟合谱

    Fig. 2.  (a) Experimental device diagram of our two tuning forks’ coupled system; (b) schematic diagram of the experiment system; (c) measured and fitted spectra of two tuning forks without coupling; (d) measured and fitted spectra of two tuning forks with coupling.

  • [1]

    Garrido A C L, Martinez M A G, Nussenzveig P 2002 Am. J. Phys. 70 37

    [2]

    朱旭鹏, 张轼, 石惠民, 陈智全, 全军, 薛书文, 张军, 段辉高 2019 物理学报 68 247301Google Scholar

    Zhu X P, Zhang S, Shi H M, Chen Z Q, Quan J, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 247301Google Scholar

    [3]

    朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 物理学报 68 247304

    Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 247304

    [4]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [5]

    Heylman K D, Thakkar N, Horak E H, Quillin S C, Goldsmith R H 2016 Nat. Photonics 10 788Google Scholar

    [6]

    LiuZV, Li J, Liu Z, Li W, Li J, Gu C, L iZ 2017 Sci. Rep. 7 8010Google Scholar

    [7]

    Suh W, Wang Z, Fan S 2004 IEEE J. Quantum Electron. 40 1511Google Scholar

    [8]

    Fan S, Suh W, Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569Google Scholar

    [9]

    Marcuse D 1971 The Bell System Technical Journal 50 1791Google Scholar

    [10]

    Snyder A W 1970 IEEE Trans. Microwave Theory Tech. 18 383Google Scholar

    [11]

    Hardy A, Streifer W 1985 J. Lightwave Technol. LT-3 1135

    [12]

    McIntyre P D, Snyder A W 1973 J. Opt. Soc. Am. 63 1518Google Scholar

    [13]

    Butler J K, Ackley D E, Botez D 1984 Appl. Phys. Lett. 44 293Google Scholar

    [14]

    Feng L, Xu YL, William S F, Lu M H, José E B O, Vilson R A, Chen Y F, Axel S 2012 Nat. Mater. 12 108

    [15]

    Hossein H, Absar U H, Steffen W, Hipolito GG, Ramy EG, Demetrios N C, Mercedeh K 2017 Nature 548 187Google Scholar

    [16]

    Mikhail F L, Mikhail V R, Alexander N P, Yuri S K 2017 Nat. Photonics 11 543Google Scholar

    [17]

    Miri M A, Andrea A 2019 Science 363 42

    [18]

    SafaviNaeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [19]

    Andersen D R, Datta S, Gunshor R L 1983 J. Appl. Phys. 54 5608Google Scholar

    [20]

    Stegeman G I, Seaton C T 1985 J. Appl. Phys. 58 R57Google Scholar

    [21]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [22]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [23]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljačić M 2007 Science 317 83Google Scholar

    [24]

    Zhang F, Hackworth S A, Fu W, Li C, Mao Z, Sun M 2011 IEEE Trans. Magn. 47 1478Google Scholar

    [25]

    Karalis A, Joannopoulos J D, Soljačić M 2008 Ann. Phys. 323 34Google Scholar

    [26]

    Wang B, Yerazunis W, Teo K H 2013 Proc. IEEE 101 1359Google Scholar

    [27]

    Haus H A 1984 Waves and Fields in Optoelectronics (New Jersey: Prentice-Hall) pp197–217

    [28]

    Huang W X, Wang Q J, Yin X G, Huang C P, Huang H, Wang Y M, Zhu Y Y 2011 J. Appl. Phys. 109 114310Google Scholar

    [29]

    Karabalin R, Cross M, Roukes M 2009 Phys. Rev. B 79 165309Google Scholar

    [30]

    Villanueva L, Kenig E, Karabalin R, Matheny M, Lifshitz R, Cross M, Roukes M 2013 Phys. Rev.Lett. 110 177208Google Scholar

  • [1] 任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧. 基于法布里-珀罗腔的可调谐连续域束缚态及应用. 物理学报, 2024, 73(17): 174205. doi: 10.7498/aps.73.20240861
    [2] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [3] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211650
    [4] 李朝刚, 汪茂胜, 方泉, 彭雪城, 黄万霞. 表象变换和久期微扰理论在耦合杜芬方程中的应用. 物理学报, 2021, 70(2): 024601. doi: 10.7498/aps.70.20201057
    [5] 付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红. 基于包层模谐振的三包层石英特种光纤温度传感特性研究. 物理学报, 2016, 65(2): 024211. doi: 10.7498/aps.65.024211
    [6] 凌宏胜, 田佳欣, 周淑娜, 魏达秀. Ising耦合体系中量子傅里叶变换的优化. 物理学报, 2015, 64(17): 170301. doi: 10.7498/aps.64.170301
    [7] 王虎, 沈文渊, 耿志辉, 徐寿喜, 王斌, 杜朝海, 刘濮鲲. 高功率回旋振荡管Denisov型辐射器的研究. 物理学报, 2013, 62(23): 238401. doi: 10.7498/aps.62.238401
    [8] 沈文渊, 王虎, 耿志辉, 杜朝海, 刘濮鲲. 基于波导模式变换的圆波导TE62模式激励器的研究. 物理学报, 2013, 62(23): 238403. doi: 10.7498/aps.62.238403
    [9] 裴丽, 赵瑞峰. 统一非对称光波导横向耦合模理论分析. 物理学报, 2013, 62(18): 184213. doi: 10.7498/aps.62.184213
    [10] 石兰芳, 欧阳成, 莫嘉琪. 一类海-气耦合振子模型行波解的渐近解法. 物理学报, 2012, 61(12): 120201. doi: 10.7498/aps.61.120201
    [11] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析. 物理学报, 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [12] 丁凌云, 龚中良, 黄 平. 基于耦合振子模型的摩擦力计算研究. 物理学报, 2008, 57(10): 6500-6506. doi: 10.7498/aps.57.6500
    [13] 於陆勒, 盛政明, 张 杰. 均匀等离子体光栅的色散特性研究. 物理学报, 2008, 57(10): 6457-6464. doi: 10.7498/aps.57.6457
    [14] 王燕花, 任文华, 刘 艳, 谭中伟, 简水生. 相位修正的耦合模理论用于计算光纤Bragg光栅法布里-珀罗腔透射谱. 物理学报, 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [15] 郝大鹏, 唐 刚, 夏 辉, 陈 华, 张雷明, 寻之朋. 非局域Sun-Guo-Grant方程的自洽模耦合理论. 物理学报, 2007, 56(4): 2018-2023. doi: 10.7498/aps.56.2018
    [16] 郑仰东, 李俊庆, 李淳飞. 双振子模型手性分子介质的二次谐波理论. 物理学报, 2003, 52(2): 372-376. doi: 10.7498/aps.52.372
    [17] 王目光, 魏 淮, 简水生. 复合型双周期光纤光栅的理论与实验研究. 物理学报, 2003, 52(3): 609-614. doi: 10.7498/aps.52.609
    [18] 郑仰东, 李俊庆, 李淳飞. 耦合双振子模型手性分子的微观参量对和频过程的影响. 物理学报, 2002, 51(6): 1279-1285. doi: 10.7498/aps.51.1279
    [19] 李松茂, 王奇, 吴中, 卫青. Kerr类非线性介质周期结构中的慢Bragg孤子. 物理学报, 2001, 50(3): 489-495. doi: 10.7498/aps.50.489
    [20] 吕振国, 周佐平, 邬起, 李庆行, 余振新. 基于新型非线性耦合腔锁模过程的时域理论分析. 物理学报, 1994, 43(2): 233-238. doi: 10.7498/aps.43.233
计量
  • 文章访问数:  7652
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-05
  • 修回日期:  2020-01-14
  • 刊出日期:  2020-04-05

/

返回文章
返回