搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于束缚态的可调等离子体光子晶体窄带滤波器

周铭杰 谭海云 周岩 诸葛兰剑 吴雪梅

引用本文:
Citation:

一种基于束缚态的可调等离子体光子晶体窄带滤波器

周铭杰, 谭海云, 周岩, 诸葛兰剑, 吴雪梅

A tunable narrow-band plasma photonic crystal filter based on bound state

Zhou Ming-Jie, Tan Hai-Yun, Zhou Yan, Zhuge Lan-Jian, Wu Xue-Mei
PDF
HTML
导出引用
  • 利用一维光子晶体和二维等离子体光子晶体构建了一种基于束缚态的可调窄带滤波器, 滤波器的工作频率位于两个光子晶体的共同禁带内. 使用COMSOL Multiphysics有限元仿真软件研究了一维光子晶体的几何参数和等离子体参数对滤波器性能的影响. 研究发现两个禁带的中心频率和深度越接近, 则滤波器的峰值透射率越大, 且中心频率占主导作用. 另一方面, 滤波器的工作频率与等离子体密度成正比, 与碰撞频率成反比. 滤波器品质因子和峰值透射率随等离子体密度的增大先增大后减小, 随碰撞频率的增加而减小. 最后, 随着等离子体碰撞频率的增加, 峰值透射率和品质因子没有发生显著下降, 这表明滤波器对等离子体损耗有一定抵抗力. 我们相信这项工作有助于一些新型等离子体光子晶体滤波器的研究.
    Photonic crystals are widely used in a class of narrow-band frequency selective filter due to their excellent ability to control electromagnetic waves, in which the working frequency depends on the structural parameters of the point defect resonant cavity of the photonic crystal, and the introduction of some dispersive media into the cavity makes the filter adjustable. In general, this kind of cavity-filter is very sensitive to the parameter disturbance of the cavity, and the quality factor of the filter can be reduced significantly by material loss. On the other hand, some studies have shown that there may be bound states at the interface between two different photonic crystals, and the bound state is often accompanied by narrow band and high transmittance, which implies that a narrow-band filter based on bound states is feasible. Importantly, filters based on bound states may be resistant to material loss to some degree. In this paper, a bound state related tunable narrow-band filter composed of a one-dimensional photonic crystal and a two-dimensional plasma photonic crystal is proposed, and the working frequency of the filter is located in the common band gap of the two photonic crystals. The COMSOL Multiphysics finite element simulation software is used to study the influences of geometric parameters of the one-dimensional photonic crystal and plasma parameters on the performance of the filter. It is found that the closer to each other the center frequencies and depths of the two different forbidden bands are, the greater the peak transmittance of the filter, in which the center frequency dominates, will be. On the other hand, the working frequency of the filter is directly proportional to plasma density and inversely proportional to collision frequency. The quality factor of the filter first increases and then decreases with the increase of plasma density, and decreases with the increase of collision frequency. The peak transmittance of the filter first increases and then decreases with the increase of plasma density, and decreases with the increase of plasma collision frequency. Finally, with the increase of collision frequency, both the peak transmittance and the quality factor decrease slightly, which indicates that the filter has a certain resistance to plasma loss. We believe that this work is helpful in investigating some new plasmonic photonic crystal filters.
      通信作者: 吴雪梅, xmwu@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11975163)和江苏省高等院校优秀学科建设工程(PAPD)资助的课题
      Corresponding author: Wu Xue-Mei, xmwu@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975163) and the Priority Academic Program Development of Jiangsu Province Higher Education Institutions (PAPD), China
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [3]

    Russell P 2003 Science 299 358Google Scholar

    [4]

    Fan S H, Villeneuve P R, Joannopoulos J D, Haus H A 1998 Opt. Express 3 4Google Scholar

    [5]

    Dinu M, Willet R L, Baldwin K, Pfeiffer L N, West K W 2003 Appl. Phys. Lett. 83 4471Google Scholar

    [6]

    Serier C, Cheype C, Chantalat R, Thevenot M, Monediere T, Reineix A, Jecko B 2001 Microw. Opt. Technol. Lett. 29 312Google Scholar

    [7]

    Xu J M, Chen L, Zang X F, Cai B, Peng Y, Zhu Y M 2013 Appl. Phys. Lett. 103 161116Google Scholar

    [8]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Technol. Elect. Eng. 20 591Google Scholar

    [9]

    Belyaev B A, Khodenkov S A, Shabanov V F 2016 Dokl. Phys. 61 155Google Scholar

    [10]

    Karakilinc O O, Dinleyici M S 2015 Microw. Opt. Technol. Lett. 57 1806Google Scholar

    [11]

    Upadhyay M, Awasthi S K, Shiveshwari L, Srivastava P, Ojha P 2015 J. Supercond. Nov. Magn. 28 2275Google Scholar

    [12]

    Wang C C, Chen L W 2010 Physica B 405 1210Google Scholar

    [13]

    Zhang H, Guo P, Chen P, Chang S J, Yuan J H 2009 J. Opt. Soc. Am. B-Opt. Phys. 26 101Google Scholar

    [14]

    Suthar B, Bhargava A 2012 IEEE Photonics Technol. Lett. 24 338Google Scholar

    [15]

    Wang B, Cappelli M A 2015 Appl. Phys. Lett. 107 171107Google Scholar

    [16]

    John D J, Steven G J, Joshua N W, Robert D M 2008 Photonic Crystals Molding the Flow of Light (2nd Ed.) (New Jersey: Princeton University Press)

    [17]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017Google Scholar

    [18]

    Sakai O, Tachibana K 2012 Plasma Sources Sci. Technol. 21 013001Google Scholar

    [19]

    Shi X, Xue C H, Jiang H T, Chen H 2016 Opt. Express 24 18580Google Scholar

    [20]

    Ling L, John D J, Marin S 2014 Nat. Photonics 8 821Google Scholar

    [21]

    Tan H Y, Zhou M J, Zhuge L J, Wu X M 2019 Phys. Plasmas 26 052107Google Scholar

    [22]

    Tan H Y, Zhou M J, Zhuge L J, Wu X M 2021 J. Phys. D-Appl. Phys. 54 085106Google Scholar

    [23]

    章海锋, 刘少斌, 孔祥鲲 2011 物理学报 60 055209Google Scholar

    Zhang H F, Liu S B, Kong X K 2011 Acta Phys. Sin. 60 055209Google Scholar

    [24]

    Kong X K, Liu S B, Zhang H F, Li C Z 2010 Phys. Plasmas 17 103506Google Scholar

  • 图 1  滤波器示意图, 下图展示了两种光子晶体的原胞

    Fig. 1.  Schematic diagram of the filter. The figure below shows the unit cells of two photonic crystals.

    图 2  随等离子体密度增加, 2D PPC的1阶带隙经历了从关闭到再打开的过程

    Fig. 2.  As the plasma density increases, the first-order band gap of 2D PPC undergoes a process from closing to reopening

    图 3  (a) $ {n}_{\rm{e}}=0 $时两种光子晶体的能带图; (b) ${n}_{\rm{e}}=6\times {10}^{11}\;{\rm{c}\rm{m}}^{-3}$时两种光子晶体的能带图; (c) $ {n}_{\rm{e}}=0 $${n}_{\rm{e}} =6\;\times $$ {10}^{11}\;{\rm{c}\rm{m}}^{-3}$时滤波器的透射谱; (d) 电场强度沿模型边界的线分布, 其中, 插图表示滤波器中的电场分布

    Fig. 3.  (a) Band structure of two different PCs with $ {n}_{\rm{e}}=0 $; (b) band structure of two different PCs with ${n}_{\rm{e}}=6\times {10}^{11}\;{\rm{c}\rm{m}}^{-3}$; (c) trans-mission spectrum of the filter when $ {n}_{\rm{e}}=0 $ and ${n}_{\rm{e}}=6\times {10}^{11}\;{\rm{c}\rm{m}}^{-3}$; (d) the intensity of electric field along the line of the model boundary, where the inset shows the electric field distribution in the filter.

    图 4  (a)滤波器透射谱与$ {N}_{1} $的关系; (b) 滤波器透射谱与d的关系

    Fig. 4.  (a) The relationship between the transmission spectrum of the filter and $ {N}_{1} $; (b) the relationship between the transmission spectrum of the filter and d.

    图 5  (a)禁带匹配度与$ {N}_{1} $的关系; (b)禁带匹配度与$ d $的关系

    Fig. 5.  (a) The relationship between the band gap matching degree and $ {N}_{1} $; (b) the relationship between the band gap matching degree and $ d $.

    图 6  (a) 滤波器透射谱与$ {n}_{\rm{e}} $的关系, 点线表示滤波器的中心频率随$ {n}_{\rm{e}} $的变化; (b) 滤波器峰值透射率以及品质因子与$ {n}_{\rm{e}} $的关系

    Fig. 6.  (a) The relationship between the transmission spectrum of the filter and $ {n}_{\rm{e}} $, while the dotted line shows the evolution of the center frequency of the filter with $ {n}_{\rm{e}} $; (b) the relationship between the peak transmittance of the filter as well as the quality factor and $ {n}_{\rm{e}} $

    图 7  (a) 滤波器透射谱与$ {\nu }_{\rm{e}} $的关系, 点线表示滤波器的中心频率随$ {\nu }_{\rm{e}} $的变化; (b) 滤波器峰值透射率以及品质因子与$ {\nu }_{\rm{e}} $的关系

    Fig. 7.  (a) The relationship between the transmission spectrum of the filter and $ {\nu }_{\rm{e}} $, while the dotted line shows the evolution of the center frequency of the filter with $ {\nu }_{\rm{e}} $; (b) the relationship between the peak transmittance of the filter as well as the quality factor and $ {\nu }_{\rm{e}} $.

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [3]

    Russell P 2003 Science 299 358Google Scholar

    [4]

    Fan S H, Villeneuve P R, Joannopoulos J D, Haus H A 1998 Opt. Express 3 4Google Scholar

    [5]

    Dinu M, Willet R L, Baldwin K, Pfeiffer L N, West K W 2003 Appl. Phys. Lett. 83 4471Google Scholar

    [6]

    Serier C, Cheype C, Chantalat R, Thevenot M, Monediere T, Reineix A, Jecko B 2001 Microw. Opt. Technol. Lett. 29 312Google Scholar

    [7]

    Xu J M, Chen L, Zang X F, Cai B, Peng Y, Zhu Y M 2013 Appl. Phys. Lett. 103 161116Google Scholar

    [8]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Technol. Elect. Eng. 20 591Google Scholar

    [9]

    Belyaev B A, Khodenkov S A, Shabanov V F 2016 Dokl. Phys. 61 155Google Scholar

    [10]

    Karakilinc O O, Dinleyici M S 2015 Microw. Opt. Technol. Lett. 57 1806Google Scholar

    [11]

    Upadhyay M, Awasthi S K, Shiveshwari L, Srivastava P, Ojha P 2015 J. Supercond. Nov. Magn. 28 2275Google Scholar

    [12]

    Wang C C, Chen L W 2010 Physica B 405 1210Google Scholar

    [13]

    Zhang H, Guo P, Chen P, Chang S J, Yuan J H 2009 J. Opt. Soc. Am. B-Opt. Phys. 26 101Google Scholar

    [14]

    Suthar B, Bhargava A 2012 IEEE Photonics Technol. Lett. 24 338Google Scholar

    [15]

    Wang B, Cappelli M A 2015 Appl. Phys. Lett. 107 171107Google Scholar

    [16]

    John D J, Steven G J, Joshua N W, Robert D M 2008 Photonic Crystals Molding the Flow of Light (2nd Ed.) (New Jersey: Princeton University Press)

    [17]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017Google Scholar

    [18]

    Sakai O, Tachibana K 2012 Plasma Sources Sci. Technol. 21 013001Google Scholar

    [19]

    Shi X, Xue C H, Jiang H T, Chen H 2016 Opt. Express 24 18580Google Scholar

    [20]

    Ling L, John D J, Marin S 2014 Nat. Photonics 8 821Google Scholar

    [21]

    Tan H Y, Zhou M J, Zhuge L J, Wu X M 2019 Phys. Plasmas 26 052107Google Scholar

    [22]

    Tan H Y, Zhou M J, Zhuge L J, Wu X M 2021 J. Phys. D-Appl. Phys. 54 085106Google Scholar

    [23]

    章海锋, 刘少斌, 孔祥鲲 2011 物理学报 60 055209Google Scholar

    Zhang H F, Liu S B, Kong X K 2011 Acta Phys. Sin. 60 055209Google Scholar

    [24]

    Kong X K, Liu S B, Zhang H F, Li C Z 2010 Phys. Plasmas 17 103506Google Scholar

  • [1] 杨雨森, 王林, 苟德梽, 唐正明. 等离子体-光子晶体阵列结构波导模型的电磁特性. 物理学报, 2024, 73(24): 245201. doi: 10.7498/aps.73.20241300
    [2] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均. 平行轨道加速器等离子体动力学特性研究. 物理学报, 2018, 67(6): 065201. doi: 10.7498/aps.67.20172403
    [3] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器. 物理学报, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [4] 张鑫, 黄勇, 王万波, 唐坤, 李华星. 对称式布局介质阻挡放电等离子体激励器诱导启动涡. 物理学报, 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [5] 庄煜阳, 周雯, 季珂, 陈鹤鸣. 一种双反射壁型二维光子晶体窄带滤波器. 物理学报, 2015, 64(22): 224202. doi: 10.7498/aps.64.224202
    [6] 朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东. 多系双局域态光子晶体的可调谐滤波特性分析. 物理学报, 2015, 64(3): 034209. doi: 10.7498/aps.64.034209
    [7] 王林, 夏智勋, 罗振兵, 周岩, 张宇. 两电极等离子体合成射流激励器工作特性研究. 物理学报, 2014, 63(19): 194702. doi: 10.7498/aps.63.194702
    [8] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [9] 陈鹤鸣, 孟晴. 高效光子晶体太赫兹滤波器的设计. 物理学报, 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [10] 章海锋, 刘少斌, 孔祥鲲. TM模式下二维非磁化等离子体光子晶体的禁带调制特性分析. 物理学报, 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [11] 章海锋, 刘少斌, 孔祥鲲. 横磁模式下二维非磁化等离子体光子晶体的线缺陷特性研究. 物理学报, 2011, 60(2): 025215. doi: 10.7498/aps.60.025215
    [12] 葛琳, 季沛勇. 等离子体波背景下的光子Berry相位. 物理学报, 2009, 58(1): 347-353. doi: 10.7498/aps.58.347
    [13] 章海锋, 马力, 刘少斌. 磁化等离子体光子晶体缺陷态的研究. 物理学报, 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [14] 王身云, 刘少斌. 基于等离子体缺陷层的一维可调谐微波光子晶体滤波特性. 物理学报, 2009, 58(10): 7062-7066. doi: 10.7498/aps.58.7062
    [15] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振. 物理学报, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [16] 马小涛, 郑婉华, 任 刚, 樊中朝, 陈良惠. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究. 物理学报, 2007, 56(2): 977-981. doi: 10.7498/aps.56.977
    [17] 安治永, 李应红, 吴 云, 苏长兵, 宋慧敏. 对称等离子体激励器系统电场仿真研究. 物理学报, 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [18] 张民仓, 王振邦. Makarov势的Dirac方程的束缚态解. 物理学报, 2006, 55(12): 6229-6233. doi: 10.7498/aps.55.6229
    [19] 刘少斌, 顾长青, 周建江, 袁乃昌. 磁化等离子体光子晶体的FDTD分析. 物理学报, 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
    [20] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析. 物理学报, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
计量
  • 文章访问数:  4351
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-03-23
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回