搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种双反射壁型二维光子晶体窄带滤波器

庄煜阳 周雯 季珂 陈鹤鸣

引用本文:
Citation:

一种双反射壁型二维光子晶体窄带滤波器

庄煜阳, 周雯, 季珂, 陈鹤鸣

A narrow bandpass filter based on two-dimensional photonic crystals with two reflectors

Zhuang Yu-Yang, Zhou Wen, Ji Ke, Chen He-Ming
PDF
导出引用
  • 提出了一种基于双反射壁型结构的光子晶体窄带滤波器, 该滤波器由一个单模谐振腔和两个反射壁构成. 通过调节谐振腔与反射壁之间的距离可以改变滤波谱线的带宽. 利用时域有限差分法进行仿真分析, 结果表明, 该滤波器的工作频率在193.40 THz附近, 带宽小于5.9 GHz, 峰值透射率高达94%, 工作区域长度仅有9 m. 该器件可应用于密集波分复用系统.
    With the rapid development of wavelength division multiplexing technology, narrow bandpass filters have drawn widespread public attention. In this paper, a compact narrow bandpass filter based on two-dimensional photonic crystals is proposed. The transfer characteristics of the filter with a single mode resonator and two reflectors are analyzed by using coupled mode theory. Research results show that the bandwidth of the filter can be controlled by adjusting the distance between the resonator and the two reflectors, which can be applied to the realization of narrow bandpass filters, and even ultra-narrow bandpass filters. Based on the theoretical model mentioned above, we design a narrow bandpass filter based on two-dimensional photonic crystals, which is composed of silicon rods with square lattice in air. Two single mode waveguides are formed by removing two rows of rods. Meanwhile, a point cavity is formed by removing a dielectric column. In order to precisely control the phase change between the resonator and the two reflectors, a phase adjustment region is introduced. We study the transmission spectrum of the structure by the finite-difference time-domain (FDTD) method. We find that the bandwidth of the filter can be narrowed when the phase change between the resonator and the two reflectors satisfies the specific conditions, and the transmission ratio is still high as well. These are consistent with the theoretical analyses. But it is worth noting that there is a difference between the simulation result and theoretical result. This is because in the theoretical analysis, we consider that the propagation constants of the frequencies close to the central frequency are the same. In fact, the propagation constant increases with the increase of frequency, however, this does not affect the central frequency nor its transmission. The performance of the designed filter is analyzed by FDTD, showing that the working frequency is close to 193.40 THz, the bandwidth is smaller than 5.9 GHz, the peak transmittance is up to 94%, and the length of the working area is only 9 m. Compared with the conventional photonic crystal filters, the designed narrow bandpass filer is very compact, and the performance is suitable for dense wavelength division multiplexed communication systems.
      通信作者: 陈鹤鸣, chhm@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61077084, 61571237)和江苏省研究生科研创新计划(批准号: KYLX15_0835)资助的课题.
      Corresponding author: Chen He-Ming, chhm@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61077084, 61571237) and the Colleges and Universities in Jiangsu Province Plans to Graduate Research and Innovation, China (Grant No. KYLX15_0835).
    [1]

    Zhao Y H, Qian C J, Qiu K S, Gao Y N, Xu X L 2015 Opt. Express 23 9211

    [2]

    Chen H M, Wang G D 2011 Acta Opt. Sin. 31 0323006 (in Chinese) [陈鹤鸣, 王国栋 2011 光学学报 31 0323006]

    [3]

    Li Z J, Zhang Y, Li B J 2006 Opt. Express 14 3887

    [4]

    Zhou X P, Shu J 2013 Acta Opt. Sin. 33 0423002 (in Chinese) [周兴平, 疏静 2013 光学学报 33 0423002]

    [5]

    Sesay M, Jin X, Ouyang Z B 2013 J. Opt. Soc. Am. B 30 2043

    [6]

    Ren H L, Qin Y L, Liu K, Wu Z F, Hu W S, Jiang C, Jin Y H 2010 Chin. Opt. Lett. 8 749

    [7]

    Ren H L, Qin Y L, Wen H, Cao Q J, Guo S Q, Chang L P, Hu W S, Jiang C, Jin Y H 2012 IEEE Photon. Tech. Lett. 24 332

    [8]

    Fasihi K, Mohammadnejad S 2009 Opt. Express 17 8983

    [9]

    Wu Y D, Hsu K W, Shih T T, Lee J J 2009 J. Opt. Soc. Am. B 26 640

    [10]

    Chen H M, Meng Q 2011 Acta Phys. Sin. 60 014202 (in Chinese) [陈鹤鸣, 孟晴 2011 物理学报 60 014202]

    [11]

    Yang C Y, Xu X M, Ye T, Miu L P 2011 Acta Phys. Sin. 60 017807 (in Chinese) [杨春云, 徐旭明, 叶涛, 缪路平 2011 物理学报 60 017807]

    [12]

    Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205 (in Chinese) [陈颖, 王文跃, 于娜 2014 物理学报 63 034205]

    [13]

    Yu J L, Shen H J, Ye S, Hong Q S 2012 Acta Opt. Sin. 32 1106003 (in Chinese) [余建立, 沈宏君, 叶松, 洪求三 2012 光学学报 32 1106003]

    [14]

    Dai Z X, Wang J L, Heng Y 2011 Opt. Express 19 3667

    [15]

    Chen C, Li X C, Li H H, Xu K, Wu J, Lin J T 2007 Opt. Express 15 11278

  • [1]

    Zhao Y H, Qian C J, Qiu K S, Gao Y N, Xu X L 2015 Opt. Express 23 9211

    [2]

    Chen H M, Wang G D 2011 Acta Opt. Sin. 31 0323006 (in Chinese) [陈鹤鸣, 王国栋 2011 光学学报 31 0323006]

    [3]

    Li Z J, Zhang Y, Li B J 2006 Opt. Express 14 3887

    [4]

    Zhou X P, Shu J 2013 Acta Opt. Sin. 33 0423002 (in Chinese) [周兴平, 疏静 2013 光学学报 33 0423002]

    [5]

    Sesay M, Jin X, Ouyang Z B 2013 J. Opt. Soc. Am. B 30 2043

    [6]

    Ren H L, Qin Y L, Liu K, Wu Z F, Hu W S, Jiang C, Jin Y H 2010 Chin. Opt. Lett. 8 749

    [7]

    Ren H L, Qin Y L, Wen H, Cao Q J, Guo S Q, Chang L P, Hu W S, Jiang C, Jin Y H 2012 IEEE Photon. Tech. Lett. 24 332

    [8]

    Fasihi K, Mohammadnejad S 2009 Opt. Express 17 8983

    [9]

    Wu Y D, Hsu K W, Shih T T, Lee J J 2009 J. Opt. Soc. Am. B 26 640

    [10]

    Chen H M, Meng Q 2011 Acta Phys. Sin. 60 014202 (in Chinese) [陈鹤鸣, 孟晴 2011 物理学报 60 014202]

    [11]

    Yang C Y, Xu X M, Ye T, Miu L P 2011 Acta Phys. Sin. 60 017807 (in Chinese) [杨春云, 徐旭明, 叶涛, 缪路平 2011 物理学报 60 017807]

    [12]

    Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205 (in Chinese) [陈颖, 王文跃, 于娜 2014 物理学报 63 034205]

    [13]

    Yu J L, Shen H J, Ye S, Hong Q S 2012 Acta Opt. Sin. 32 1106003 (in Chinese) [余建立, 沈宏君, 叶松, 洪求三 2012 光学学报 32 1106003]

    [14]

    Dai Z X, Wang J L, Heng Y 2011 Opt. Express 19 3667

    [15]

    Chen C, Li X C, Li H H, Xu K, Wu J, Lin J T 2007 Opt. Express 15 11278

  • [1] 周晓霞, 陈英, 蔡力. 基于零折射率介质的超窄带光学滤波器. 物理学报, 2023, 72(17): 174205. doi: 10.7498/aps.72.20230394
    [2] 鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配. 基于硅基光子器件的Fano共振研究进展. 物理学报, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [3] 周铭杰, 谭海云, 周岩, 诸葛兰剑, 吴雪梅. 一种基于束缚态的可调等离子体光子晶体窄带滤波器. 物理学报, 2021, 70(17): 175201. doi: 10.7498/aps.70.20210241
    [4] 戚志明, 梁文耀. 表层厚度渐变一维耦合腔光子晶体的反射相位特性及其应用. 物理学报, 2016, 65(7): 074201. doi: 10.7498/aps.65.074201
    [5] 梁振江, 刘海霞, 牛燕雄, 尹贻恒. 基于谐振腔增强型石墨烯光电探测器的设计及 性能分析. 物理学报, 2016, 65(13): 138501. doi: 10.7498/aps.65.138501
    [6] 梁振江, 刘海霞, 牛燕雄, 刘凯铭, 尹贻恒. THz谐振腔型石墨烯光电探测器的设计. 物理学报, 2016, 65(16): 168101. doi: 10.7498/aps.65.168101
    [7] 李培, 王辅忠, 张丽珠, 张光璐. 左手介质对谐振腔谐振频率的影响. 物理学报, 2015, 64(12): 124103. doi: 10.7498/aps.64.124103
    [8] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究. 物理学报, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [9] 雷朝军, 喻胜, 李宏福, 牛新建, 刘迎辉, 候慎勇, 张天钟. 缓变回旋管谐振腔研究. 物理学报, 2012, 61(18): 180202. doi: 10.7498/aps.61.180202
    [10] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [11] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究. 物理学报, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [12] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [13] 柏宁丰, 洪玮, 孙小菡. 复合缺陷型电磁帯隙谐振腔. 物理学报, 2011, 60(1): 018401. doi: 10.7498/aps.60.018401
    [14] 陈鹤鸣, 孟晴. 高效光子晶体太赫兹滤波器的设计. 物理学报, 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [15] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器. 物理学报, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [16] 王宝强, 徐晨, 刘英明, 解意洋, 刘发, 赵振波, 周康, 沈光地. 光子晶体垂直腔面发射激光器的电流分布研究. 物理学报, 2010, 59(12): 8542-8547. doi: 10.7498/aps.59.8542
    [17] 席丽霞, 唐先锋, 王少康, 张晓光. 基于光子晶体光纤的相位再生器的设计及优化. 物理学报, 2009, 58(9): 6243-6247. doi: 10.7498/aps.58.6243
    [18] 刘畅, 罗尧天, 唐昌建, 刘濮鲲. 回旋管光子带隙谐振腔冷腔电磁模式分析. 物理学报, 2009, 58(12): 8174-8179. doi: 10.7498/aps.58.8174
    [19] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法. 物理学报, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [20] 冯立娟, 江海涛, 李宏强, 张冶文, 陈 鸿. 光子晶体耦合腔波导的色散特性. 物理学报, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
计量
  • 文章访问数:  5493
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-22
  • 修回日期:  2015-07-05
  • 刊出日期:  2015-11-05

/

返回文章
返回