搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双粒子耦合的单层介质柱阵列对电磁波的调控

郑红霞 周鑫 韩影 俞昕宁 刘士阳

引用本文:
Citation:

基于双粒子耦合的单层介质柱阵列对电磁波的调控

郑红霞, 周鑫, 韩影, 俞昕宁, 刘士阳

Rectifying electromagnetic waves by a single-layer dielectric particle array based on dual-particle coupling

Zheng Hong-Xia, Zhou Xin, Han Ying, Yu Xin-Ning, Liu Shi-Yang
PDF
导出引用
  • 基于Mie散射理论和多重散射理论探讨了亚波长介质柱阵列对电磁波的调控. 研究结果表明: 当在全反射的单层介质柱阵列中引入一个空位缺陷时会产生12%的透射; 如果在入射一侧再引入一合适的介质柱时, 其透射率可增加至36%, 为空位缺陷时的3倍; 当在出射一侧对称位置处引入另一完全相同的介质柱时, 可以调制透射电磁波的模式, 虽然总的透射率没有增加,但向前散射的电磁波能量明显增强. 采用这种双粒子耦合体系, 在金属柱的表面等离激元共振频率附近也可以实现类似的效果. 这些体系结构简单、易于在实验上实现, 这对于太赫兹甚至光频段的光子集成线路中的元件设计和光束调控很有意义.
    Metamaterials, composed of subwavelength building blocks with artificial electric/magnetic response, have attracted the intensive interest due to the unprecedented controllability of electromagnetic (EM) waves and the potential applications. Nonetheless, the resonance of the metallic building block induces a strong loss, severely limiting the performance. Dielectric particle based subwavelength structures provide an alternative choice for the manipulation of EM waves, meanwhile, circumventing the loss problem inevitable for metallic metamaterials, in particular, in optical regime. It is shown that this kind of metamaterial can be used to guide the surface wave with the dielectric particle chain, which is similar to the surface plasmon mediated wave guiding. The structure is also shown to be capable of implementing negative refraction with negligible loss theoretically and experimentally. In addition, the single-layer dielectric rod array can be used to achieve omnidirectional total reflection at subwavelength scale. To further extend the functionality of dielectric based metamaterials and make them more appropriate for integrated optics, a variety of experimentally feasible configurations should be designed. In this work, based on the Mie scattering theory and the multiple scattering theory, we investigate the manipulation of EM waves through a single-layer subwavelength dielectric rod array (SDRA) and particle coupled system. Our results show that by removing the central dielectric rod in the SDRA and at the beam focus, like a vacancy defect, a normal incident transverse electric polarized Gaussian beam is weakly transmitted with an efficiency of less than 12 percent. By further introducing a dielectric rod with optimized parameters on the incident side of the vacancy defect, an enhanced transmitted EM wave with an efficiency of 36 percent is exhibited, nearly triple that with a solely vacancy defect. By adding another identical dielectric rod symmetrically on the outgoing side of the vacancy defect, the transmitted EM field pattern can be clearly tailored due to the dual-particle coupling so that the forward scattering is intensified, similar to the beaming effect, although the total transmittance is not further improved. Interestingly, by use of dual-particle system composed of metallic rods a similar effect can be realized as well near the surface plasmon resonance, adding flexibility to design. It should be pointed out that one-way beam propagation can be possibly achieved by constructing an asymmetric dual-particle coupling system. More importantly, the proposed systems are simple and experimentally realizable, which makes them favorable for the on-chip beam steering, offering a possibility to improve the optical element design of the integration photonic circuit in the terahertz and optical range.
      通信作者: 刘士阳, syliu@zjnu.cn
    • 基金项目: 国家自然科学基金(批准号: 11274277, 11574275)、浙江省自然科学基金(批准号:LR16A040001)、复旦大学表面物理国家重点实验室开放项目(批准号: KF2013_6)和国家级大学生创新创业训练计划(批准号: 201410345011)资助的课题.
      Corresponding author: Liu Shi-Yang, syliu@zjnu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274277, 11574275), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16A040001), the Open Project of State Key Laboratory of Surface Physics in Fudan University, China (Grant No. KF2013_6), and the National Undergraduate Training Programs for Innovation and Entrepreneurship, China (Grant No. 201410345011).
    [1]

    Veselago V C 1968 Sov. Phys. Usp. 10 509

    [2]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    He Q, Sun S L, Xiao S Y, Li X, Song Z Y, Sun W J, Zhou L 2014 Chin. Phys. B 23 047808

    [5]

    Monticone F, Al A 2014 Chin. Phys. B 23 047809

    [6]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [7]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [8]

    Lai Y, Chen H Y, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901

    [9]

    Chen H S, Zheng B, Shen L, Wang H P, Zhang X M, Zheludev N I, Zhang B L 2013 Nat. Commun. 4 2652

    [10]

    Sun L K, Yu Z F, H J 2015 Acta Phys. Sin. 64 084401 (in Chinese) [孙良奎, 于哲峰, 黄洁 2015 物理学报 64 084401]

    [11]

    Liu X B, Liu M L, Chen J Z, Shi H Y, Chen B, Jiang Y S, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 084202 (in Chinese) [刘晓波, 刘明黎, 陈建忠, 施宏宇, 陈博, 蒋延生, 徐卓, 张安学 2015 物理学报 64 084202]

    [12]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [13]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [14]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)

    [15]

    Ozbay E 2006 Science 311 189

    [16]

    Soukoulis C M, Wegener M 2010 Science 330 1633

    [17]

    Khurgin J B 2015 Nat. Nanotechnol. 10 2

    [18]

    Liu S Y, Chen W K, Du J J, Lin Z F, Chui S T, Chan C T 2008 Phys. Rev. Lett. 101 157407

    [19]

    Poo Y, Wu R X, Liu S Y, Yang Y, Lin Z F, Chui S T 2012 Appl. Phys. Lett. 101 081912

    [20]

    Yu J J, Chen H J, Wu Y B, Liu S Y 2012 Eur. Phys. Lett. 100 47007

    [21]

    Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203 (in Chinese) [林海笑, 俞昕宁, 刘士阳 2015 物理学报 64 034203]

    [22]

    Tong L, Gattass R R, Ashcom J B, He S L, Lou J, Shen M, Maxwell I, Mazur E 2003 Nature 426 816

    [23]

    Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P 2004 Science 305 1269

    [24]

    Guo Y S, Zhou J, Lan C W, Bi K 2014 Appl. Phys. Lett. 104 123902

    [25]

    Du J J, Liu S Y, Lin Z F, Zi J, Chui S T 2009 Phys. Rev. A 79 051801

    [26]

    Du J J, Liu S Y, Lin Z F, Zi J, Chui S T 2011 Phys. Rev. A 83 035803

    [27]

    Du J J, Lin Z F, Chui S T, Lu W L, Li H, Wu A M, Sheng Z, Zi J, Wang X, Zou S C, Gan F W 2011 Phys. Rev. Lett. 106 203903

    [28]

    Du J J, Lin Z F, Chui S T, Dong G J, Zhang W P 2013 Phys. Rev. Lett. 110 163902

    [29]

    Wu A M, Li H, Du J J, Ni X J, Ye Z L, Wang Y, Sheng Z, Zou S C, Gan F W, Zhang X, Wang X 2015 Nano Lett. 15 2055

    [30]

    Felbacq D, Tayeb G, Maystre D 1994 J. Opt. Soc. Am. A 11 2526

    [31]

    Liu S Y, Lin Z F 2006 Phys. Rev. E 73 066609

    [32]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martn-Moreno L, Garca-Vidal F J, Ebbesen T W 2002 Science 297 820

    [33]

    Martn-Moreno L, Garca-Vidal F J, Lezec H J, Degiron A, Ebbesen T W 2003 Phys. Rev. Lett. 90 167401

    [34]

    Guo Y S, Zhou J, Lan C W, Wu H Y, Bi K 2014 Appl. Phys. Lett. 104 204103

    [35]

    Cai W S, Shalaev V 2010 Optical Metamaterials: Fundamentals and Applications (New York: Springer) pp20-21

  • [1]

    Veselago V C 1968 Sov. Phys. Usp. 10 509

    [2]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    He Q, Sun S L, Xiao S Y, Li X, Song Z Y, Sun W J, Zhou L 2014 Chin. Phys. B 23 047808

    [5]

    Monticone F, Al A 2014 Chin. Phys. B 23 047809

    [6]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [7]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [8]

    Lai Y, Chen H Y, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901

    [9]

    Chen H S, Zheng B, Shen L, Wang H P, Zhang X M, Zheludev N I, Zhang B L 2013 Nat. Commun. 4 2652

    [10]

    Sun L K, Yu Z F, H J 2015 Acta Phys. Sin. 64 084401 (in Chinese) [孙良奎, 于哲峰, 黄洁 2015 物理学报 64 084401]

    [11]

    Liu X B, Liu M L, Chen J Z, Shi H Y, Chen B, Jiang Y S, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 084202 (in Chinese) [刘晓波, 刘明黎, 陈建忠, 施宏宇, 陈博, 蒋延生, 徐卓, 张安学 2015 物理学报 64 084202]

    [12]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [13]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [14]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)

    [15]

    Ozbay E 2006 Science 311 189

    [16]

    Soukoulis C M, Wegener M 2010 Science 330 1633

    [17]

    Khurgin J B 2015 Nat. Nanotechnol. 10 2

    [18]

    Liu S Y, Chen W K, Du J J, Lin Z F, Chui S T, Chan C T 2008 Phys. Rev. Lett. 101 157407

    [19]

    Poo Y, Wu R X, Liu S Y, Yang Y, Lin Z F, Chui S T 2012 Appl. Phys. Lett. 101 081912

    [20]

    Yu J J, Chen H J, Wu Y B, Liu S Y 2012 Eur. Phys. Lett. 100 47007

    [21]

    Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203 (in Chinese) [林海笑, 俞昕宁, 刘士阳 2015 物理学报 64 034203]

    [22]

    Tong L, Gattass R R, Ashcom J B, He S L, Lou J, Shen M, Maxwell I, Mazur E 2003 Nature 426 816

    [23]

    Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P 2004 Science 305 1269

    [24]

    Guo Y S, Zhou J, Lan C W, Bi K 2014 Appl. Phys. Lett. 104 123902

    [25]

    Du J J, Liu S Y, Lin Z F, Zi J, Chui S T 2009 Phys. Rev. A 79 051801

    [26]

    Du J J, Liu S Y, Lin Z F, Zi J, Chui S T 2011 Phys. Rev. A 83 035803

    [27]

    Du J J, Lin Z F, Chui S T, Lu W L, Li H, Wu A M, Sheng Z, Zi J, Wang X, Zou S C, Gan F W 2011 Phys. Rev. Lett. 106 203903

    [28]

    Du J J, Lin Z F, Chui S T, Dong G J, Zhang W P 2013 Phys. Rev. Lett. 110 163902

    [29]

    Wu A M, Li H, Du J J, Ni X J, Ye Z L, Wang Y, Sheng Z, Zou S C, Gan F W, Zhang X, Wang X 2015 Nano Lett. 15 2055

    [30]

    Felbacq D, Tayeb G, Maystre D 1994 J. Opt. Soc. Am. A 11 2526

    [31]

    Liu S Y, Lin Z F 2006 Phys. Rev. E 73 066609

    [32]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martn-Moreno L, Garca-Vidal F J, Ebbesen T W 2002 Science 297 820

    [33]

    Martn-Moreno L, Garca-Vidal F J, Lezec H J, Degiron A, Ebbesen T W 2003 Phys. Rev. Lett. 90 167401

    [34]

    Guo Y S, Zhou J, Lan C W, Wu H Y, Bi K 2014 Appl. Phys. Lett. 104 204103

    [35]

    Cai W S, Shalaev V 2010 Optical Metamaterials: Fundamentals and Applications (New York: Springer) pp20-21

  • [1] 温广锋, 赵领中, 张琳, 陈毅云, 罗圻林, 方安安, 刘士阳. 基于柱对称梯度折射率体系的可调控光束传输. 物理学报, 2022, 71(14): 144201. doi: 10.7498/aps.71.20212247
    [2] 杨瑞科, 李茜茜, 姚荣辉. 沙尘大气电磁波多重散射及衰减. 物理学报, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205
    [3] 张金碧, 丁蕾, 王颖萍, 郑海洋, 方黎. 利用近前向散射图样识别单粒子形状的理论研究. 物理学报, 2015, 64(5): 054202. doi: 10.7498/aps.64.054202
    [4] 高翔, 施永强, 杨青真, 陈立海. 介质涂覆位置对双S弯排气系统电磁散射特性影响研究. 物理学报, 2015, 64(2): 024103. doi: 10.7498/aps.64.024103
    [5] 林海笑, 俞昕宁, 刘士阳. 基于零折射磁性特异电磁介质的波前调控. 物理学报, 2015, 64(3): 034203. doi: 10.7498/aps.64.034203
    [6] 张宇, 张晓娟, 方广有. 大尺度分层介质粗糙面电磁散射的特性研究. 物理学报, 2012, 61(18): 184203. doi: 10.7498/aps.61.184203
    [7] 钱可元, 马骏, 付伟, 罗毅. 基于Mie散射理论的白光发光二极管荧光粉散射特性研究. 物理学报, 2012, 61(20): 204201. doi: 10.7498/aps.61.204201
    [8] 丁佩, 周强, 胡伟琴, 蔡根旺, 梁二军. 利用电介质柱共振器实现电磁响应模式可转变的电磁超介质. 物理学报, 2011, 60(5): 054102. doi: 10.7498/aps.60.054102
    [9] 刘文军, 毛宏燕, 付国庆, 曲士良. 散射介质中多重散射太赫兹脉冲的时域统计特性. 物理学报, 2010, 59(2): 913-917. doi: 10.7498/aps.59.913
    [10] 吴大建, 刘晓峻. 金纳米球壳光学吸收的Mie理论分析. 物理学报, 2008, 57(8): 5138-5142. doi: 10.7498/aps.57.5138
    [11] 王清华, 张颖颖, 来建成, 李振华, 贺安之. Mie理论在生物组织散射特性分析中的应用. 物理学报, 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [12] 刘晓东, 李曙光, 侯蓝田, 王慧田. 含金属散射体的中红外无序介质的光子定域化理论研究. 物理学报, 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
    [13] 曹松, 唐景昌, 汪雷, 朱萍. SO2/Ni(111)吸附系统局域结构的多重散射团簇理论研究. 物理学报, 2001, 50(9): 1756-1762. doi: 10.7498/aps.50.1756
    [14] 朱 萍, 唐景昌, 何江平. 多重散射团簇方法对吸附系统SO2/Ag(110)的理论分析. 物理学报, 2000, 49(8): 1632-1638. doi: 10.7498/aps.49.1632
    [15] 庄飞, 唐景昌, 何江平, 汪雷. 多重散射团簇理论对CO/NiO(100),NO/NiO(100)吸附系统的分析与比较. 物理学报, 2000, 49(3): 570-576. doi: 10.7498/aps.49.570
    [16] 冯小松, 唐景昌. C2H4/Ni(100)近边X射线吸收谱的多重散射理论研究. 物理学报, 1993, 42(4): 647-655. doi: 10.7498/aps.42.647
    [17] 唐景昌, 付送保, 季红, 陈一兵. 利用原子集团多重散射理论决定HCOO-Cu(110)的结构. 物理学报, 1992, 41(6): 968-976. doi: 10.7498/aps.41.968
    [18] 潘晓川, 梁晓玲, 李家明. 量子数亏损理论——多重散射计算方法. 物理学报, 1987, 36(4): 426-435. doi: 10.7498/aps.36.426
    [19] 沈浩明. 球面镜的散射理论. 物理学报, 1978, 27(5): 533-546. doi: 10.7498/aps.27.533
    [20] 杨泽森. 时间相关的多道散射理论. 物理学报, 1963, 19(4): 239-248. doi: 10.7498/aps.19.239
计量
  • 文章访问数:  5399
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-29
  • 修回日期:  2015-06-16
  • 刊出日期:  2015-11-05

/

返回文章
返回