搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维短沟槽复合准晶结构减阻效应及模拟分析

张盟 耿兴国 张瑶 王晓娜

引用本文:
Citation:

一维短沟槽复合准晶结构减阻效应及模拟分析

张盟, 耿兴国, 张瑶, 王晓娜

Mechanism analysis of one-dimensional short groove quasicrystal structure drag-reduction

Zhang Meng, Geng Xing-Guo, Zhang Yao, Wang Xiao-Na
PDF
导出引用
  • 本文测试了人工构建的一维短沟槽复合准晶结构对流体的减阻性能,并与一维短沟槽复合周期结构和一维沟槽周期结构的流阻进行了对比.实验结果表明,一维短沟槽复合准晶结构的减阻效果优于一维短沟槽复合周期结构,其中一维短沟槽十二重复合准晶结构的减阻效果最佳,同时与一维沟槽周期结构具有同样的减阻效果.在机理分析方面,建立了二维光栅的夫琅禾费衍射波模型,对通过一维短沟槽复合准晶结构的波谱特征进行模拟分析. 频谱分析表明,经过二维准周期光栅的相干波强度谱具有谱带结构特征,抑制了大角度方向上的强峰形成.这一结果与流体流过一维短沟槽复合准晶结构相对应,展向上的准周期结构在激活边界层微扰动的同时,也使得二次涡分布比较均匀,从而抑制了展向强扰动的形成,所以能够有效减小流阻.
    Short groove arranged in one-dimensional quasicrystal structure is designed by mechanical method in this paper and drag reduction experiments are performed by viscometer. The results show that there is a novel drag reduction effect compared with periodic structure of one-dimensional short groove, in which 12-fold quasicrystal structure of one-dimensional short groove has the best drag reduction, and has an equal effect compared with one-dimensional periodic groove structure. An two-dimensional grating model is proposed to investigate the mechanism. It is found that in comparison with two-dimensional periodic grating, the intensity spectrum of coherent wave passing through two-dimensional quasiperiodic grating has several characteristic structure factors. Corresponding to the quasicrystal structures of one-dimensional short groove, the quasiperiodic structure in spanwise direction can activate little disturbance on boundary layer and make the secondary vortex more uniform, which restrains the strong disturbance in spanwise, consequently reducing the drag.
    • 基金项目: 国家自然科学基金(批准号: 10872172) 和西北工业大学研究生创业种子基金(批准号: z2012234). 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10872172), and the Graduate Starting Seed Fund of Northwestern Polytechnical University (Grant No. z2012234).
    [1]

    Robert J P 1992 Special Coure Skip Friction Drag Reduction, AGARD Report 786 No. 2

    [2]

    Matthias S, Stanislav G 2004 ????? (Berlin: Springer-Verlag) 68

    [3]

    Walsh M J 1982 AIAA 82 0169

    [4]

    Walsh M J, Lindemann A M 1984 AIAA- 84 0347

    [5]

    Ball P 1999 Nature 400 507

    [6]

    Koeltzsch K, Dinkelacker A, Grundmann R 2002 Exp Fluids 33 346

    [7]

    Wang J J 1998 Journal of Beijing University of Aeronautics and Astronautics 24 31 (in Chinese) [王晋军 1998 北京航空航天大学学报 24 31]

    [8]

    Kwing-So, Choi 2000 Fluid Dynamics Research 26 325

    [9]

    Bushnell D M, Hefner J N 1990 Viscous Drag Reduction in Boundray Layers p203

    [10]

    Bechert D W, Brus M 1997 Fluid Mech. 338 59

    [11]

    Xue W H, Geng X G, Li F, Li J, Wu J 2010 Chin. Phys. Lett. 27 104703

    [12]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 物理学报 58 421]

    [13]

    Shechtman D, Blech I, Gratias D, Chan J W 1984 Phys. Rev. Lett. 53 1951

    [14]

    Trebin H R 2003 Quasicrystals, Structure and Physical Properties (Weinheim: Wiley-VCH) ISBN 3-527-40399-X

    [15]

    Han J H, Luo G, Qi Z M, Zhao Z Y 1999 Journal of Anhui University 23 18

    [16]

    Jeong Young Park, Ogletree D F, Salmeron M, Ribeiro R A, Canfield P C, Jenks C J, Thiel P A 2006 Phys. Rev. B 74024203

    [17]

    Guo K X 2004 Quasiperiodic Crystals (Hangzhou: Zhejiang Science and Technology Publishing House) 12 p70 (in Chinese) [郭可信 2004 准晶研究 (杭州:浙江科学技术出版社) 12 第70页]

    [18]

    Fewell M E, Hellums J D 1977 Trans. Soc. Rheol 21 535

    [19]

    Harish Shankaran, Sriram Neelamegham 2001 Biophysical Journal 80 2631

    [20]

    Bacher E V, Smith C R 1985 AIAA Paper 85 0548

    [21]

    Choi K S 1989 Journal of Fluid Mechanics 208 417

    [22]

    Matsui T, Agrawal A, Nahata A, Vardeny Z, Valy 2007 Nature 446 517

  • [1]

    Robert J P 1992 Special Coure Skip Friction Drag Reduction, AGARD Report 786 No. 2

    [2]

    Matthias S, Stanislav G 2004 ????? (Berlin: Springer-Verlag) 68

    [3]

    Walsh M J 1982 AIAA 82 0169

    [4]

    Walsh M J, Lindemann A M 1984 AIAA- 84 0347

    [5]

    Ball P 1999 Nature 400 507

    [6]

    Koeltzsch K, Dinkelacker A, Grundmann R 2002 Exp Fluids 33 346

    [7]

    Wang J J 1998 Journal of Beijing University of Aeronautics and Astronautics 24 31 (in Chinese) [王晋军 1998 北京航空航天大学学报 24 31]

    [8]

    Kwing-So, Choi 2000 Fluid Dynamics Research 26 325

    [9]

    Bushnell D M, Hefner J N 1990 Viscous Drag Reduction in Boundray Layers p203

    [10]

    Bechert D W, Brus M 1997 Fluid Mech. 338 59

    [11]

    Xue W H, Geng X G, Li F, Li J, Wu J 2010 Chin. Phys. Lett. 27 104703

    [12]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 物理学报 58 421]

    [13]

    Shechtman D, Blech I, Gratias D, Chan J W 1984 Phys. Rev. Lett. 53 1951

    [14]

    Trebin H R 2003 Quasicrystals, Structure and Physical Properties (Weinheim: Wiley-VCH) ISBN 3-527-40399-X

    [15]

    Han J H, Luo G, Qi Z M, Zhao Z Y 1999 Journal of Anhui University 23 18

    [16]

    Jeong Young Park, Ogletree D F, Salmeron M, Ribeiro R A, Canfield P C, Jenks C J, Thiel P A 2006 Phys. Rev. B 74024203

    [17]

    Guo K X 2004 Quasiperiodic Crystals (Hangzhou: Zhejiang Science and Technology Publishing House) 12 p70 (in Chinese) [郭可信 2004 准晶研究 (杭州:浙江科学技术出版社) 12 第70页]

    [18]

    Fewell M E, Hellums J D 1977 Trans. Soc. Rheol 21 535

    [19]

    Harish Shankaran, Sriram Neelamegham 2001 Biophysical Journal 80 2631

    [20]

    Bacher E V, Smith C R 1985 AIAA Paper 85 0548

    [21]

    Choi K S 1989 Journal of Fluid Mechanics 208 417

    [22]

    Matsui T, Agrawal A, Nahata A, Vardeny Z, Valy 2007 Nature 446 517

  • [1] 黄礼胜, 罗荣祥. 二维气体模型中的负微分热阻. 物理学报, 2023, 72(1): 010501. doi: 10.7498/aps.72.20221498
    [2] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [3] 吴庚坤, 姬光荣, 姬婷婷, 任红霞. 基于文氏改进谱的二维粗糙海面模型及其电磁散射研究. 物理学报, 2014, 63(13): 134203. doi: 10.7498/aps.63.134203
    [4] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [5] 郎莎莎, 耿兴国, 臧渡洋. 八重准周期排列的短沟槽结构减阻机理分析. 物理学报, 2014, 63(8): 084704. doi: 10.7498/aps.63.084704
    [6] 贾汝娟, 王苍龙, 杨阳, 苟学强, 陈建敏, 段文山. 二维Frenkel-Kontorova模型中六角对称结构的摩擦现象. 物理学报, 2013, 62(6): 068104. doi: 10.7498/aps.62.068104
    [7] 于淼, 高劲松, 张建, 徐念喜. 二维光栅与周期性缝隙阵列组合薄膜结构的杂散光抑制. 物理学报, 2013, 62(20): 204208. doi: 10.7498/aps.62.204208
    [8] 王晓娜, 耿兴国, 臧渡洋. 一维周期与准周期排列沟槽结构的流体减阻特性研究. 物理学报, 2013, 62(5): 054701. doi: 10.7498/aps.62.054701
    [9] 厉以宇, 王媛媛, 陈浩, 朱德喜, 胡川, 瞿佳. 基于二维结构薄膜的偏振选择相位光栅的研究. 物理学报, 2010, 59(7): 5110-5115. doi: 10.7498/aps.59.5110
    [10] 雷晓蔚, 赵晓雨. 二维完全阻挫XY模型的动力学指数. 物理学报, 2009, 58(8): 5661-5666. doi: 10.7498/aps.58.5661
    [11] 高鹏, 耿兴国, 欧修龙, 薛文辉. 人工构建二维准晶复合结构的减阻特性研究. 物理学报, 2009, 58(1): 421-426. doi: 10.7498/aps.58.421
    [12] 郝保良, 刘濮鲲, 唐昌建. 二维非正交坐标斜方格金属光子带隙结构. 物理学报, 2006, 55(4): 1862-1867. doi: 10.7498/aps.55.1862
    [13] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式. 物理学报, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [14] 刘小良, 徐 慧, 马松山, 宋招权, 邓超生. 准二维无序系统的电子结构. 物理学报, 2006, 55(5): 2492-2497. doi: 10.7498/aps.55.2492
    [15] 路志刚, 宫玉彬, 魏彦玉, 王文祥. 二维金属光子晶体的带结构研究. 物理学报, 2006, 55(7): 3590-3596. doi: 10.7498/aps.55.3590
    [16] 车 明, 周云松, 王福合, 顾本源. 二维正方格子磁性光子晶体的带隙结构. 物理学报, 2005, 54(10): 4770-4775. doi: 10.7498/aps.54.4770
    [17] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [18] 吴福根, 刘有延. 二维周期性复合介质中声波带隙结构及其缺陷态. 物理学报, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
    [19] 傅秀军, 程波林, 郑大昉, 刘有延. 二维Fibonacci准晶电子能谱. 物理学报, 1991, 40(10): 1666-1676. doi: 10.7498/aps.40.1666
    [20] 马鹏辉, 刘有延, 邹南之, 周义昌. 二维准晶顶角模型的电子性质. 物理学报, 1990, 39(8): 100-107. doi: 10.7498/aps.39.100
计量
  • 文章访问数:  6976
  • PDF下载量:  479
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-09
  • 修回日期:  2012-04-01

/

返回文章
返回