搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于地基观测的时序卫星红外光谱建模与分析

谷牧 任栖锋 周金梅 廖胜

引用本文:
Citation:

基于地基观测的时序卫星红外光谱建模与分析

谷牧, 任栖锋, 周金梅, 廖胜

Modeling and analyzing of time-resolved satellite infrared spectrum based on ground-based detector

Gu Mu, Ren Qi-Feng, Zhou Jin-Mei, Liao Sheng
PDF
HTML
导出引用
  • 针对地基观测的卫星红外光谱受复杂因素的影响和外场试验对测量卫星物性信息的缺乏, 无法解释卫星红外光谱反演出特征的有效性和具体物理意义的问题, 提出了一种基于地基观测的卫星热红外光谱的建模和分析的方法. 首先, 考虑了太阳辐射、地球辐射、卫星各面对探测器的可见情况、地基探测器可探测卫星的范围、大气衰减等因素的影响, 更加准确地建立卫星热红外光谱模型. 然后, 以风云三号卫星为例, 利用该模型计算了在观测时序上卫星在地基探测器入瞳上的3—14 ${\text{μ}}{\rm m}$红外光谱辐照度; 分析了影响卫星红外光谱变化的主要因素. 最后, 利用普朗克函数拟合卫星红外光谱, 提取出特征与卫星的物性比较, 并对其进行分析. 结果表明: 在各种影响因素中, 由卫星运动引起的对探测器可见情况的改变是影响卫星红外光谱数据的主要因素. 等效温度和等效面积物理含义能被有效地解释, 等效温度接近于太阳帆板的温度, 温差仅在15 K左右, 等效面积能表征卫星投影面积的变化; 发现利用帆板和本体有较大的温差, 能实现帆板和本体的分离, 并实现新特征的提取.
    Satellite infrared spectra based on ground-based detector are affected by complex factors such as satellite surface temperature, solar radiation, observation angle, etc, whose change cannot be detected in external field experiment. Therefore, it is impossible to analyze what are the main factors that affect the satellite infrared spectra. At the same time, due to the lack of physical information about the satellites through the external field experiment, the validity and physical significance of retrieving features from satellite infrared spectrum cannot be explained. In view of the above problem, a method to model and analyze satellite thermal infrared spectra based on ground-based detector is proposed. It is a feasible research method to accurately establish satellite thermal infrared spectrum model based on the ground detection, then to analyze the simulated infrared spectrum data. Firstly, considering the solar radiation, earth radiation, detectable range of the satellite on the detector, observation angle, atmospheric attenuation, etc., the satellite thermal infrared spectrum model can be established more accurately. Then, taking FY-3 satellite for example, the physical and orbital parameters of the satellite are set up, and the 3−14${\text{μ}}{\rm m}$ infrared irradiance of the satellite on the pupil of the detector is calculated by using the model. Meanwhile, the main factors affecting the infrared spectrum of the satellite are analyzed. Finally, the equivalent temperature and equivalent area are extracted by fitting the satellite infrared spectrum with the Planck formula. And they are compared with the physical properties of the satellite. The results show that among the various factors, with the satellite’ movement, the change of the visible state of the satellite induced by the satellite’s movement is the main factor that affects the satellite infrared spectrum. The physical meanings of the equivalent temperature and equivalent area can also be explained effectively. The equivalent temperature is close to the temperatures of the solar panels, and their temperature difference is only about 15 K. The change of equivalent area is consistent with that of the satellite projected area. Moreover, it is also found that there is a large temperature difference between the solar panels and the body, which makes their infrared spectra obviously different. Therefore, it is hopeful to obtain the areas and temperatures of the solar panels and the body respectively. This research can make up for the shortcomings of the external field experiments and promote the monitoring and recognizing of satellites by ground-based infrared detectors.
      通信作者: 廖胜, shenliaoioe@163.com
    • 基金项目: 国家自然科学基金(批准号: 61501429)资助的课题.
      Corresponding author: Liao Sheng, shenliaoioe@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61501429).
    [1]

    孙成明, 赵飞, 袁艳 2015 物理学报 64 034202Google Scholar

    Sun C M, Zhao F, Yuan Y 2015 Acta Phys. Sin. 64 034202Google Scholar

    [2]

    Fulcoly D, Kalamaroff K, Chun F 2012 J. Spacecr. Rockets 49 76Google Scholar

    [3]

    Lynch D, Russell R, Gutierrez D, et al. 2006 Proc. Adv. Maui Opt. Space Surveillance Technol. Conf. Hawaii, September 10–14, 2006

    [4]

    徐灿, 张雅声, 赵阳生, 李鹏 2017 光谱学与光谱分析 37 672

    Xu C, Zhang Y S, Zhao Y S, Li P 2017 Spectrosc. Spect. Anal. 37 672

    [5]

    Skinner M, Payne T, Russell R, et al. 2007 Proc. Adv. Maui Opt. Space Surveillance Technol. Conf. Hawaii, September 12–15, 2007

    [6]

    Skinner M, Russell R, Rudy R, et al. 2009 Proceedings of the International Astronomical Congress 60th Meeting Daejeon, Republic of Korea, October 12–16, 2009 p1791

    [7]

    Skinner M, Russell R, Kelecy T, et al. 2014 Acta Astronaut. 105 1

    [8]

    Skinner M, Russell R, Kelecy T, et al. 2014 Proceedings of the International Astronomical Congress 65th Meeting Toronto, Canada, September 9, 2014 p1188

    [9]

    张伟清 2006 博士学位论文 (南京: 南京理工大学)

    Zhang W Q 2006 Ph.D. Dissertation (Nanjing: Nanjing University of Science and Technology)(in Chinese)

    [10]

    张永阳 2007 硕士学位论文 (南京: 南京理工大学)

    Zhang Y Y 2007 M.S. Thesis (Nanjing: Nanjing University of Science and Technology)(in Chinese)

    [11]

    马伟 2011 博士学位论文 (南京: 南京理工大学)

    Ma W 2011 Ph.D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [12]

    孙成明, 袁艳, 张修宝 2010 物理学报 59 7523Google Scholar

    Sun C M, Yuan Y, Zhang X B 2010 Acta Phys. Sin. 59 7523Google Scholar

    [13]

    王雨飞, 李强, 廖胜 2011 红外与激光工程 40 2085Google Scholar

    Wang Y, Li Q, Liao S 2011 Infrar. Laser Eng. 40 2085Google Scholar

    [14]

    汪洪源, 陈赟 2016 红外与激光工程 45 504002

    Wang H Y, Chen Y 2016 Infrar. Laser Eng. 45 504002

    [15]

    李文豪, 刘朝晖, 穆猷, 等 2017 红外与激光工程 46 604003

    Li W H, Liu Z H, Mu Y, et al. 2017 Infrar. Laser Eng. 46 604003

    [16]

    谈和平, 夏新林, 刘林华, 阮立明 2006 红外辐射特性与传输的数值计(哈尔滨: 哈尔滨工业大学出版社) 第 378页

    Tan H P, Xia X L, Liu L H, Ruan L M 2006 Numerical Calculation of Infrared Radiation Characteristics and Transmission (Harbin: Harbin Institute of Technology Press) p378 (in Chinese)

    [17]

    王先起, 廖胜, 沈忙作, 黄建明 2005 光电工程 32 5Google Scholar

    Wang X Q, Liao S, Shen M Z, Huang J M 2005 Opto-Electronic Engineering 32 5Google Scholar

    [18]

    殷丽梅, 刘俊池, 王建立, 等 2014 光子学报 43 1204004

    Yin L M, Liu J C, Wang J L, et al. 2014 Acta Phot. Sin. 43 1204004

    [19]

    刘莹奇, 刘祥意 2014 光学学报 34 0512003

    Liu Y, Liu X 2014 Acta Opt. Sin. 34 0512003

    [20]

    Skinner M, Russell R, Kelecy T, et al. 2012 Acta Astronaut. 80 154Google Scholar

  • 图 1  地面探测器可观测区域

    Fig. 1.  Ground-based detector observable area.

    图 2  卫星的面元与探测器入瞳的几何位置关系

    Fig. 2.  The geometric position of facet and detector entrance pupil.

    图 3  风云三号卫星的简化几何模型

    Fig. 3.  the crude geometric structure model of the FY-3 satellite.

    图 4  在观测期间, (a) 风云三号卫星对地面探测器的倾角和斜距, (b)卫星各面法线与探测器连线的夹角余弦, (c)风云三号卫星的模拟温度场, (d)风云三号卫星在探测器上的红外光谱辐照度和BASS系统实测的地球同步卫星红外光谱[3]

    Fig. 4.  During the observation period, (a) the elevation angle and range of the FY-3 satellite to ground-based detector, (b) the angle cosine between the normal of satellite’s side and the direction of detector, (c) the simulated temperature field of the FY-3 satellite, (d) the infrared spectral irradiance of the FY-3 satellite on the detector and the infrared spectral irradiance of geosynchronous satellite measured by BASS.

    图 5  在观测期间, (a)等效温度与太阳帆板温度的比较, (b)等效面积和卫星对探测器的投影面积的比较

    Fig. 5.  During the observation period, (a) the comparison of the color temperature of n = 1 and solar panel temperature, (b) the comparison of the emissivity·projected area of n = 1 and satellite’s projected area.

    图 6  在观测期间, (a)较高温度和卫星帆板温度的比较, (b)较高温度对应的面积和帆板面积的比较, 整体面积和卫星对探测器投影面积的比较

    Fig. 6.  During the observation period, (a) the comparison of the higher temperature of n = 2 and solar panel temperature, (b) the comparison of the area corresponding to higher temperature and the area of solar panel, the comparison of the sum of the areas of n = 2 and the projection area of the satellite to the detector.

    表 1  风云三号卫星的物性参数

    Table 1.  Physical parameters of the FY-3 satellite.

    部件名称几何尺寸/mm材料发射率吸收率
    卫星本体4460 × 2200 × 3790F46聚酯薄膜0.810.1
    太阳帆板40 × 7800 × 3790背面SR107白漆0.870.17
    正面太阳电池0.860.9
    侧面有机黑漆0.880.93
    下载: 导出CSV

    表 2  风云三号卫星的轨道参数

    Table 2.  Orbital parameters of the FY-3 satellite.

    轨道半长轴/km偏心率倾角/(°)升交点赤经/(°)降交点地方时周期/min
    72070.00198.515010:00102
    下载: 导出CSV
  • [1]

    孙成明, 赵飞, 袁艳 2015 物理学报 64 034202Google Scholar

    Sun C M, Zhao F, Yuan Y 2015 Acta Phys. Sin. 64 034202Google Scholar

    [2]

    Fulcoly D, Kalamaroff K, Chun F 2012 J. Spacecr. Rockets 49 76Google Scholar

    [3]

    Lynch D, Russell R, Gutierrez D, et al. 2006 Proc. Adv. Maui Opt. Space Surveillance Technol. Conf. Hawaii, September 10–14, 2006

    [4]

    徐灿, 张雅声, 赵阳生, 李鹏 2017 光谱学与光谱分析 37 672

    Xu C, Zhang Y S, Zhao Y S, Li P 2017 Spectrosc. Spect. Anal. 37 672

    [5]

    Skinner M, Payne T, Russell R, et al. 2007 Proc. Adv. Maui Opt. Space Surveillance Technol. Conf. Hawaii, September 12–15, 2007

    [6]

    Skinner M, Russell R, Rudy R, et al. 2009 Proceedings of the International Astronomical Congress 60th Meeting Daejeon, Republic of Korea, October 12–16, 2009 p1791

    [7]

    Skinner M, Russell R, Kelecy T, et al. 2014 Acta Astronaut. 105 1

    [8]

    Skinner M, Russell R, Kelecy T, et al. 2014 Proceedings of the International Astronomical Congress 65th Meeting Toronto, Canada, September 9, 2014 p1188

    [9]

    张伟清 2006 博士学位论文 (南京: 南京理工大学)

    Zhang W Q 2006 Ph.D. Dissertation (Nanjing: Nanjing University of Science and Technology)(in Chinese)

    [10]

    张永阳 2007 硕士学位论文 (南京: 南京理工大学)

    Zhang Y Y 2007 M.S. Thesis (Nanjing: Nanjing University of Science and Technology)(in Chinese)

    [11]

    马伟 2011 博士学位论文 (南京: 南京理工大学)

    Ma W 2011 Ph.D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [12]

    孙成明, 袁艳, 张修宝 2010 物理学报 59 7523Google Scholar

    Sun C M, Yuan Y, Zhang X B 2010 Acta Phys. Sin. 59 7523Google Scholar

    [13]

    王雨飞, 李强, 廖胜 2011 红外与激光工程 40 2085Google Scholar

    Wang Y, Li Q, Liao S 2011 Infrar. Laser Eng. 40 2085Google Scholar

    [14]

    汪洪源, 陈赟 2016 红外与激光工程 45 504002

    Wang H Y, Chen Y 2016 Infrar. Laser Eng. 45 504002

    [15]

    李文豪, 刘朝晖, 穆猷, 等 2017 红外与激光工程 46 604003

    Li W H, Liu Z H, Mu Y, et al. 2017 Infrar. Laser Eng. 46 604003

    [16]

    谈和平, 夏新林, 刘林华, 阮立明 2006 红外辐射特性与传输的数值计(哈尔滨: 哈尔滨工业大学出版社) 第 378页

    Tan H P, Xia X L, Liu L H, Ruan L M 2006 Numerical Calculation of Infrared Radiation Characteristics and Transmission (Harbin: Harbin Institute of Technology Press) p378 (in Chinese)

    [17]

    王先起, 廖胜, 沈忙作, 黄建明 2005 光电工程 32 5Google Scholar

    Wang X Q, Liao S, Shen M Z, Huang J M 2005 Opto-Electronic Engineering 32 5Google Scholar

    [18]

    殷丽梅, 刘俊池, 王建立, 等 2014 光子学报 43 1204004

    Yin L M, Liu J C, Wang J L, et al. 2014 Acta Phot. Sin. 43 1204004

    [19]

    刘莹奇, 刘祥意 2014 光学学报 34 0512003

    Liu Y, Liu X 2014 Acta Opt. Sin. 34 0512003

    [20]

    Skinner M, Russell R, Kelecy T, et al. 2012 Acta Astronaut. 80 154Google Scholar

  • [1] 陈思, 张海洋, 靳发宏, 汪林, 赵长明. 运动目标的多维度微运动特征提取研究. 物理学报, 2024, 73(7): 074204. doi: 10.7498/aps.73.20231691
    [2] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型. 物理学报, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [3] 孙永丰, 徐亮, 沈先春, 王钰豪, 徐寒杨, 刘文清. 干涉型红外光谱辐射计仪器线型函数仿真及校正. 物理学报, 2021, 70(14): 140701. doi: 10.7498/aps.70.20210302
    [4] 曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, PolyakovAlexander Viktorovich. 利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl2F2的时空变化特征. 物理学报, 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [5] 汪书潮, 苏秀琴, 朱文华, 陈松懋, 张振扬, 徐伟豪, 王定杰. 基于弹性变分模态提取的时间相关单光子计数信号去噪. 物理学报, 2021, 70(17): 174304. doi: 10.7498/aps.70.20210149
    [6] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析. 物理学报, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [7] 李红, 吴炜, 杨晓敏, 严斌宇, 刘凯, Gwanggil Jeon. 基于主特征提取的Retinex多谱段图像增强. 物理学报, 2016, 65(16): 160701. doi: 10.7498/aps.65.160701
    [8] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [9] 孙成明, 赵飞, 袁艳. 基于光谱的天基空间点目标特征提取与识别. 物理学报, 2015, 64(3): 034202. doi: 10.7498/aps.64.034202
    [10] 高鹏, 王超, 支亚, 李旸, 王立玢, 丛正. 铝合金焊缝电涡流磁场信号的非线性特征提取及分类方法研究. 物理学报, 2014, 63(13): 134103. doi: 10.7498/aps.63.134103
    [11] 路志英, 刘海, 贾惠珍, 尹静. 基于雷达反射率图像特征的冰雹暴雨识别. 物理学报, 2014, 63(18): 189201. doi: 10.7498/aps.63.189201
    [12] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究. 物理学报, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [13] 祁浩, 王福豹, 邓宏. 基于无线传感器网络的地震信号特征提取方法研究. 物理学报, 2013, 62(10): 104301. doi: 10.7498/aps.62.104301
    [14] 郑安总, 冷永刚, 范胜波. 基于奇异值分解的随机共振特征提取研究. 物理学报, 2012, 61(21): 210503. doi: 10.7498/aps.61.210503
    [15] 边洪瑞, 王江, 韩春晓, 邓斌, 魏熙乐, 车艳秋. 基于复杂度的针刺脑电信号特征提取. 物理学报, 2011, 60(11): 118701. doi: 10.7498/aps.60.118701
    [16] 刘晓东, 陶万军, 郑旭光, 萩原雅人, 孟冬冬, 张森林, 郭其新. 磁几何阻挫材料羟基氯化钴的中红外光谱特征. 物理学报, 2011, 60(3): 037803. doi: 10.7498/aps.60.037803
    [17] 刘辉, 杨俊安, 王一. 基于流形学习的声目标特征提取方法研究. 物理学报, 2011, 60(7): 074302. doi: 10.7498/aps.60.074302
    [18] 韩春晓, 王江, 车艳秋, 邓斌, 郭义, 郭永明, 刘阳阳. 针刺足三里的脊髓背根神经电信号非线性特征提取. 物理学报, 2010, 59(8): 5880-5887. doi: 10.7498/aps.59.5880
    [19] 孟庆芳, 周卫东, 陈月辉, 彭玉华. 基于非线性预测效果的癫痫脑电信号的特征提取方法. 物理学报, 2010, 59(1): 123-130. doi: 10.7498/aps.59.123
    [20] 周晴. 一维二链段晶体红外光谱的格林函数方法. 物理学报, 1984, 33(2): 193-201. doi: 10.7498/aps.33.193
计量
  • 文章访问数:  6698
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-30
  • 修回日期:  2019-01-10
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回