搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rubrene∶MoO3混合薄膜的制备及光学和电学性质

李瑞东 邓金祥 张浩 徐智洋 潘志伟 孙俊杰 王贵生

引用本文:
Citation:

Rubrene∶MoO3混合薄膜的制备及光学和电学性质

李瑞东, 邓金祥, 张浩, 徐智洋, 潘志伟, 孙俊杰, 王贵生

Preparation, optical, and electrical properties of rubrene∶MoO3 films

Li Rui-Dong, Deng Jin-Xiang, Zhang Hao, Xu Zhi-Yang, Pan Zhi-Wei, Sun Jun-Jie, Wang Gui-Sheng
PDF
HTML
导出引用
  • 利用热蒸发技术在衬底温度为室温的硅衬底、氧化铟锡衬底和石英衬底上制备了红荧烯与氧化钼的混合薄膜. 将两种材料放置于不同的坩埚中, 通过控制蒸发源的温度来控制混合比例, 制备了不同比例的混合薄膜. 通过原子力显微镜对混合薄膜的表面形貌进行了测量, 发现当红荧烯与氧化钼的比例为2∶1时, 薄膜表面的平整度最好; 通过X射线衍射分析对混合薄膜的结晶性进行分析, 发现不同浓度的混合薄膜均表现出非晶态特征. 通过PL谱和吸收光谱研究了不同比例的混合薄膜的光学性质, 从光致发光谱可以发现: 混合薄膜在近红外区域有显著吸收, 说明红荧烯在氧化钼诱导下产生中间能级, 形成电荷转移络合物. 从吸收谱知: 除4∶1外, 其他比例的混合薄膜具有几乎相同的吸收峰. 根据Tauc方程计算了混合薄膜的光学带隙, 发现当红荧烯与氧化钼的比例为2∶1时, 混合薄膜的带隙最窄(~2.23 eV). 制备了结构为Al/rubrene∶MoO3/ITO的器件, 测试了J-V特性, 研究了混合薄膜的电学性质. 发现当混合比例为4∶1和2∶1时, 混合薄膜与金属电极的接触表现为欧姆接触. 本研究显示出红荧烯和氧化钼的混合薄膜在近红外区域有潜在的应用前景, 也为红荧烯和氧化钼的混合薄膜在有机光电器件的应用提供了基础.
    In this paper, the mixed films with different rubrene-to-MoO3 ratios are deposited on the substrates of Si, indium tin oxide and quartz glass by using the thermal evaporation technique. First, these films are characterized by atomic force microscopy and X-ray diffraction in order to identify their surface morphology and their structure properties. The results show that all the films are amorphous and the film has the best flatness when the rubrene-to-MoO3 ratio is 2∶1. Second, the optical properties of the mixed films are investigated by both photoluminescence (PL) spectra and absorption spectra. The optical band gap of rubrene and MoO3 are 2.2 eV and 3.49 eV respectively and there is almost no absorption about rubrene and MoO3 in the near-infrared (NIR) region. However the PL spectrum shows a peak in NIR region and it indicates that the interface between rubrene and MoO3 possesses an abrupt discontinuity at the vacuum level, resulting in electron wave functions overlapping and charge-transfer complex (CTC) forming. The intermediate state within the original band gap of rubrene with energy of 1.25 eV is induced by the CTC, which suggests the possibility of charge transfer exciton generated upon NIR excitation. The absorption spectra of the mixed films show that there is an obvious absorption. All the films have the same absorption peak except the film with a rubrene-to-MoO3 ratio of 4∶1 and it indicates that the concentration of MoO3 has almost no influence on the absorption of the mixed films. The optical band gaps of the mixed thin films are calculated in a spectral range of 345-1035 nm according to the Tauc equation, and the results show that the optical band gap of the film with a rubrene-to-MoO3 ratio of 2∶1 is narrowest (~2.23 eV). In order to study the electrical characteristics of the mixed films, an Al/rubrene:MoO3/ITO device is fabricated. The current density-voltage (J-V) characteristic is also investigated. The analysis of the J-V measurement for the device indicates that the current conduction in the Al/rubrene:MoO3/ITO device is Ohmic type when the rubrene-to-MoO3 ratios are 4∶1 and 2∶1, and it is Schottky type when the ratio is other value. The current for rubrene-to-MoO3 ratio of 1∶1 is larger than that for 1∶2, which indicates that the contact is better when the surface is more smooth. These properties of the mixed films can result in the applications in the near-infrared region.
      通信作者: 邓金祥, jdeng@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 60876006, 60376007)、北京市自然科学基金(批准号: 4192016)和北京市教育委员会科技计划重点项目(批准号: KZ201410005008)资助的课题.
      Corresponding author: Deng Jin-Xiang, jdeng@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60876006, 60376007), the Natural Science Foundation of Beijing, China (Grant No. 4192016), and the Funding for the Development Project of Beijing Municipal Education Commission of Science and Technology, China (Grant No. KZ201410005008).
    [1]

    Sundar V C, Zaumseil J, Podzorov V, et al. 2004 Science 303 1644Google Scholar

    [2]

    Luo Y, Brun M, Rannou P, et al. 2007 Phys. Status Solidi 204 1851Google Scholar

    [3]

    Park S W, Jeong S H, Choi J M, et al. 2007 Appl. Phys. Lett. 91 26

    [4]

    邓金祥, 康成龙, 杨冰, 等 2012 真空科学与技术学报 32 678Google Scholar

    Deng J X, Kang C L, Yang B, et al. 2012 Chin. J. Vacu. Sci. Tech. 32 678Google Scholar

    [5]

    Ng T W, Lo M F, Yang Q D, et al. 2012 Adv. Func. Mater. 22 3035Google Scholar

    [6]

    Liu Y, Wu X M, Xiao Z H, et al. 2017 Appl. Surf. Sci. 413 302Google Scholar

    [7]

    Hsu C H, Deng J, Staddon C R, et al. 2007 Appl. Phys. Lett. 91 193505Google Scholar

    [8]

    Matsushima T, Jin G H, Kanai Y, et al. 2011 Org. Elec. 12 520Google Scholar

    [9]

    Kubo M, Iketaki K, Kaji T, et al. 2011 Appl. Phys. Lett. 98 40

    [10]

    Nakanotani H, Kakizoe H, Adachi C 2011 Sol. Sta. Com. 151 93Google Scholar

    [11]

    杨海刚, 尤天友, 宋桂林, 等 2011 真空 48 58Google Scholar

    Yang H G, You T Y, Song J L, et al. 2011 Vacuum 48 58Google Scholar

    [12]

    王娜娜, 于军胜, 王琦, 等 2011 量子电子学报 28 191Google Scholar

    Wang N N, Yu J S, Wang Q, et al. 2011 Chin. J. Quan. Elec. 28 191Google Scholar

    [13]

    刘恩科, 朱秉生, 罗晋生 2017 半导体物理学 (第七版) (北京: 电子工业出版社) 第201页

    Liu E K, Zhu B S, Luo J S 2017 The Physics Semiconductors E7 (Beijing: Publishing House of Electronics Industry) p201 (in Chinese)

    [14]

    李林娜,陈新亮,刘晨等 2010 光电子·激光 21 4Google Scholar

    Li L N, Chen X L, Liu C, et al. 2010 Journal of Optoelectronics·Laser 21 4Google Scholar

    [15]

    冯丽萍, 刘正堂 2008 材料开发与应用 23 5Google Scholar

    Feng L P, Liu Z T 2008 Devel. Appl. Mater. 23 5Google Scholar

    [16]

    吴伟杰 2016 硕士学位论文 (成都: 电子科技大学)

    Wu W J 2016 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [17]

    Arfaoui A, Mhamdi A, Besrour N, et al. 2018 Thin Solid Films 648 12Google Scholar

    [18]

    He X X, Chow W L, Liu F C, et al. 2017 Small 13 1602558Google Scholar

    [19]

    El-Nahass M M, Farag A M, Abd El-Rahman K F, et al. 2005 Opt. Laser Technol. 37 513Google Scholar

    [20]

    Ambily S, Menon C S 1999 Thin Solid Films 347 284Google Scholar

    [21]

    Farag A A M, Yahia I S 2010 Opt. Commun. 283 4310Google Scholar

    [22]

    Petrenko T, Krylova O, Neese F, et al. 2009 New J. Phys. 11 1367Google Scholar

    [23]

    Mitrofanov O, Lang D V, Kloc C, et al. 2006 Phys. Rev. Lett. 97 166601Google Scholar

    [24]

    Tavazzi S, Borghesi A, Papagni A, et al. 2007 Phys. Rev. B 75 245416Google Scholar

    [25]

    Tuğluoğlu N, Barış B, Gürel H, et al. 2014 J. Alloy Compd. 582 696Google Scholar

    [26]

    伍春燕, 钟韶, 陈易明等 2002 光谱学与光谱分析 22 495Google Scholar

    Wu C Y, Zhong S, Chen Y M, et al. 2002 Spec. Spec. Anal. 22 495Google Scholar

  • 图 1  不同MoO3掺杂比的rubrene∶MoO3薄膜的AFM图像(图像扫描区域2.0 μm × 2.0 μm) (a) 4∶1; (b) 2∶1; (c) 1∶1; (d) 1∶2; (e) 1∶4

    Fig. 1.  The AFM images of rubrene∶MoO3 films under different proportion (scan areas are 2.0 μm × 2.0 μm): (a) 4∶1; (b) 2∶1; (c) 1∶1; (d) 1∶2; (e) 1∶4.

    图 2  Rubrene与MoO3在不同掺杂比例下的RMS

    Fig. 2.  The RMS roughness of rubrene∶MoO3 films under different proportion.

    图 3  不同MoO3掺杂比的rubrene∶MoO3薄膜的XRD图像

    Fig. 3.  The XRD image of rubrene∶MoO3 films under different proportion

    图 4  不同MoO3掺杂比的rubrene∶MoO3薄膜的PL谱

    Fig. 4.  The PL spectrum of rubrene∶MoO3 films under different proportion.

    图 5  MoO3 和Rubrene的能级结构示意图 (a) MoO3与Rubrene各自能级图; (b) MoO3与Rubrene相互作用后的能级图

    Fig. 5.  A schematic diagram of energy level alignments about MoO3 and Rubrene: (a) Before interaction; (b) after interaction

    图 6  不同MoO3掺杂比的Rubrene∶MoO3薄膜的吸收光谱

    Fig. 6.  The absorption spectra of Rubrene∶MoO3 films under different proportions

    图 7  不同MoO3掺杂浓度的rubrene∶MoO3混合薄膜的${(\alpha hv)^2}$$hv$的关系曲线

    Fig. 7.  ${(\alpha hv)^2}$versus $hv$ plot of rubrene∶MoO3 films under different proportion

    图 8  Al/rubrene∶MoO3/ITO器件结构示意图(0.8 cm × 0.8 cm)

    Fig. 8.  Schematic illustration of the Al/rubrene∶MoO3/ITO (0.8 cm × 0.8 cm)

    图 9  室温下不同MoO3掺杂浓度的rubrene∶MoO3混合薄膜的J-V特性曲线

    Fig. 9.  Current density-voltage characteristics of rubrene∶MoO3 films under different proportion at room temperature

    表 1  利用图7关系所得能隙值

    Table 1.  The value of energy gap received from Fig. 7.

    Rubrene∶MoO34∶12∶11∶11∶21∶4
    能隙Eg/eV2.242.232.252.252.25
    下载: 导出CSV
  • [1]

    Sundar V C, Zaumseil J, Podzorov V, et al. 2004 Science 303 1644Google Scholar

    [2]

    Luo Y, Brun M, Rannou P, et al. 2007 Phys. Status Solidi 204 1851Google Scholar

    [3]

    Park S W, Jeong S H, Choi J M, et al. 2007 Appl. Phys. Lett. 91 26

    [4]

    邓金祥, 康成龙, 杨冰, 等 2012 真空科学与技术学报 32 678Google Scholar

    Deng J X, Kang C L, Yang B, et al. 2012 Chin. J. Vacu. Sci. Tech. 32 678Google Scholar

    [5]

    Ng T W, Lo M F, Yang Q D, et al. 2012 Adv. Func. Mater. 22 3035Google Scholar

    [6]

    Liu Y, Wu X M, Xiao Z H, et al. 2017 Appl. Surf. Sci. 413 302Google Scholar

    [7]

    Hsu C H, Deng J, Staddon C R, et al. 2007 Appl. Phys. Lett. 91 193505Google Scholar

    [8]

    Matsushima T, Jin G H, Kanai Y, et al. 2011 Org. Elec. 12 520Google Scholar

    [9]

    Kubo M, Iketaki K, Kaji T, et al. 2011 Appl. Phys. Lett. 98 40

    [10]

    Nakanotani H, Kakizoe H, Adachi C 2011 Sol. Sta. Com. 151 93Google Scholar

    [11]

    杨海刚, 尤天友, 宋桂林, 等 2011 真空 48 58Google Scholar

    Yang H G, You T Y, Song J L, et al. 2011 Vacuum 48 58Google Scholar

    [12]

    王娜娜, 于军胜, 王琦, 等 2011 量子电子学报 28 191Google Scholar

    Wang N N, Yu J S, Wang Q, et al. 2011 Chin. J. Quan. Elec. 28 191Google Scholar

    [13]

    刘恩科, 朱秉生, 罗晋生 2017 半导体物理学 (第七版) (北京: 电子工业出版社) 第201页

    Liu E K, Zhu B S, Luo J S 2017 The Physics Semiconductors E7 (Beijing: Publishing House of Electronics Industry) p201 (in Chinese)

    [14]

    李林娜,陈新亮,刘晨等 2010 光电子·激光 21 4Google Scholar

    Li L N, Chen X L, Liu C, et al. 2010 Journal of Optoelectronics·Laser 21 4Google Scholar

    [15]

    冯丽萍, 刘正堂 2008 材料开发与应用 23 5Google Scholar

    Feng L P, Liu Z T 2008 Devel. Appl. Mater. 23 5Google Scholar

    [16]

    吴伟杰 2016 硕士学位论文 (成都: 电子科技大学)

    Wu W J 2016 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [17]

    Arfaoui A, Mhamdi A, Besrour N, et al. 2018 Thin Solid Films 648 12Google Scholar

    [18]

    He X X, Chow W L, Liu F C, et al. 2017 Small 13 1602558Google Scholar

    [19]

    El-Nahass M M, Farag A M, Abd El-Rahman K F, et al. 2005 Opt. Laser Technol. 37 513Google Scholar

    [20]

    Ambily S, Menon C S 1999 Thin Solid Films 347 284Google Scholar

    [21]

    Farag A A M, Yahia I S 2010 Opt. Commun. 283 4310Google Scholar

    [22]

    Petrenko T, Krylova O, Neese F, et al. 2009 New J. Phys. 11 1367Google Scholar

    [23]

    Mitrofanov O, Lang D V, Kloc C, et al. 2006 Phys. Rev. Lett. 97 166601Google Scholar

    [24]

    Tavazzi S, Borghesi A, Papagni A, et al. 2007 Phys. Rev. B 75 245416Google Scholar

    [25]

    Tuğluoğlu N, Barış B, Gürel H, et al. 2014 J. Alloy Compd. 582 696Google Scholar

    [26]

    伍春燕, 钟韶, 陈易明等 2002 光谱学与光谱分析 22 495Google Scholar

    Wu C Y, Zhong S, Chen Y M, et al. 2002 Spec. Spec. Anal. 22 495Google Scholar

  • [1] 孟菁饴, 卢红伟, 马世乐, 张嘉奇, 何富民, 苏伟涛, 赵晓东, 田婷, 王翼, 邢誉. 功能化原子力显微镜在纳米电介质材料性能研究中的应用进展. 物理学报, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [2] 俞奕飞, 曹毅. 从蘸笔纳米刻印术到力化学打印. 物理学报, 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [3] 邓剑锋, 李慧琴, 于帆, 梁齐. 机械剥离折叠石墨烯粘附与纳米摩擦性质. 物理学报, 2020, 69(7): 076802. doi: 10.7498/aps.69.20191825
    [4] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响. 物理学报, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [5] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱. 物理学报, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [6] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [7] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [8] 季超, 张凌云, 窦硕星, 王鹏业. 原子力显微镜观测生物大分子图像的一种处理方法. 物理学报, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [9] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [10] 许晟瑞, 张进城, 李志明, 周小伟, 许志豪, 赵广才, 朱庆伟, 张金凤, 毛维, 郝跃. 金属有机物化学气相沉积生长的a(1120)面GaN三角坑缺陷的消除研究. 物理学报, 2009, 58(8): 5705-5708. doi: 10.7498/aps.58.5705
    [11] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [12] 邢艳辉, 邓军, 韩军, 李建军, 沈光地. 淀积在不同小倾角蓝宝石衬底的n型GaN的研究. 物理学报, 2009, 58(4): 2644-2648. doi: 10.7498/aps.58.2644
    [13] 邢艳辉, 邓军, 韩军, 李建军, 沈光地. 引入n型InGaN/GaN超晶格层提高量子阱特性研究. 物理学报, 2009, 58(1): 590-595. doi: 10.7498/aps.58.590
    [14] 邢艳辉, 韩 军, 刘建平, 邓 军, 牛南辉, 沈光地. 垒掺In提高InGaN/GaN多量子阱发光特性. 物理学报, 2007, 56(12): 7295-7299. doi: 10.7498/aps.56.7295
    [15] 樊康旗, 贾建援, 朱应敏, 刘小院. 原子力显微镜在轻敲模式下的动力学模型. 物理学报, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [16] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [17] 黄 伟, 张利春, 高玉芝, 金海岩. 掺Mo对NiSi薄膜热稳定性的改善. 物理学报, 2005, 54(5): 2252-2255. doi: 10.7498/aps.54.2252
    [18] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析. 物理学报, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [19] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究. 物理学报, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [20] 孙润广, 齐浩, 张静. 脂质体结构特性的原子力显微镜研究. 物理学报, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
计量
  • 文章访问数:  11027
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 修回日期:  2019-06-28
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回