搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性磁电换能器模型的谐振磁电效应分析及其输出功率优化

谢冰鸿 徐国凯 肖绍球 喻忠军 朱大立

引用本文:
Citation:

非线性磁电换能器模型的谐振磁电效应分析及其输出功率优化

谢冰鸿, 徐国凯, 肖绍球, 喻忠军, 朱大立

Resonance magnetoelectric effect analysis and output power optimization of nonlinear magnetoelectric transducer model

Xie Bing-Hong, Xu Guo-Kai, Xiao Shao-Qiu, Yu Zhong-Jun, Zhu Da-Li
PDF
HTML
导出引用
  • 基于非线性磁致伸缩材料的本构方程, 建立了一种“磁-力-电”多场耦合的层合磁电换能器的有限元模型, 研究了不同偏置磁场下的谐振磁电效应. 基于等效电路模型和二端口网络理论, 实现了对谐振状态下磁电系数和等效源阻抗的完整求解. 在磁电换能器与负载电阻之间引入优化的L节匹配网络, 在提升负载功率的同时拓展了工作带宽. 仿真结果与相关文献数据吻合, 证实了该模型的准确性和有效性. 仿真结果表明, 所研究的层合磁电换能器, 其磁电系数在450 Oe的偏置磁场下达到51.79 V/(cm·Oe) @ 51.4 kHz, 在350 Oe的偏置磁场下达到极限输出功率–3.01 dBm@ 50.4 kHz. 以保证负载功率为前提, 通过优化匹配网络, 可实现2.30 dB的功率提升和2.27倍的带宽拓展. 本文所建立的非线性有限元模型充分考虑了偏置磁场对谐振磁电效应的影响, 该研究结果对小型化磁耦合无线功率传输系统的设计和性能提升具有重要的指导意义.
    Magnetoelectric composites comprised of piezoelectric and magnetostrictive materials, are widely used in magnetic field sensing, energy harvesting, and transducers. This work establishes a finite element model of a laminated magnetoelectric transducer coupled with magneto-elastic-electric fields based on the constitutive equation of the nonlinear magnetostrictive material. Then, the resonant magnetoelectric effect under different biased magnetic fields is studied. Based on the equivalent circuit model and the two-port network theory, the magnetoelectric coefficient and the equivalent source impedance under the resonant state are completely solved for the first time. Introducing optimized L-section matching networks between the magnetoelectric transducer and the load resistor can increase the load power and expand the operating bandwidth. The simulation results are consistent with the data in the literature, thus confirming the accuracy and effectiveness of the model. The simulation results demonstrate that the magnetoelectric coefficient reaches 51.79 V/(cm·Oe) at 51.4 kHz and 450 Oe bias magnetic field, and the ultimate output power of –3.01 dBm at 50.4 kHz and 350 Oe bias magnetic field. To ensure the load power, the power increase of 2.30 dB and the bandwidth expansion of 2.27 times are achieved by optimizing the matching network. The nonlinear finite element model in this work takes into account of the magnetoelectric effect under the acoustic resonance state and quantifies the ultimate output power. The magnetoelectric transducer model can obtain high magnetoelectric coefficient, load power, and power density in a small volume, providing a significant advantage in terms of equilibrium. The research results are of great importance in guiding the design and performance improvement of miniaturized magnetically coupled wireless power transfer systems.
      通信作者: 徐国凯, xugk3@mail2.sysu.edu.cn ; 肖绍球, xiaoshq8@mail.sysu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA0716500)和国家自然科学基金(批准号: 62171487)资助的课题
      Corresponding author: Xu Guo-Kai, xugk3@mail2.sysu.edu.cn ; Xiao Shao-Qiu, xiaoshq8@mail.sysu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA0716500) and the National Natural Science Foundation of China (Grant No. 62171487).
    [1]

    Wang Y, Gray D, Berry D, Gao J, Li M, Li J, Viehland D 2011 Adv. Mater. 23 4111Google Scholar

    [2]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101Google Scholar

    [3]

    Ju S, Chae S H, Choi Y, Lee S, Lee H W, Ji C H 2013 Smart Mater. Struct. 22 115037Google Scholar

    [4]

    Ryu J, Carazo A V, Uchino K, Kim H E 2001 Jpn. J. Appl. Phys. 40 4948Google Scholar

    [5]

    Dong S, Li J, Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 1253Google Scholar

    [6]

    Dong S, Li J, Viehland D 2004 J. Appl. Phys. 95 2625Google Scholar

    [7]

    Zhang X, Zhou J, Yao X, Yang Z, Zhang G 2020 J. Magn. Magn. Mater. 501 166411Google Scholar

    [8]

    Nan T, Lin H, Gao Y, Matyushov A, Yu G, Chen H, Sun N, Wei S, Wang Z, Li M, Wang X, Belkessam A, Guo R, Chen B, Zhou J, Qian Z, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296Google Scholar

    [9]

    Zaeimbashi M, Nasrollahpour M, Khalifa A, Romano A, Liang X, Chen H, Sun N, Matyushov A, Lin H, Dong C, Xu Z, Mittal A, Martos-Repath I, Jha G, Mirchandani N, Das D, Onabajo M, Shrivastava A, Cash S, Sun N X 2021 Nat. Commun. 12 3141Google Scholar

    [10]

    Truong B D 2020 IEEE Sens. J. 20 5322Google Scholar

    [11]

    Truong B D, Roundy S 2020 Smart Mater. Struct. 29 085053Google Scholar

    [12]

    Truong B D, Andersen E, Casados C, Roundy S 2020 Sens. Actuator A-Phys. 316 112269Google Scholar

    [13]

    Hosur S, Sriramdas R, Karan S K, Liu N, Priya S, Kiani M 2021 IEEE Trans. Biomed. Circuits Syst. 15 1079Google Scholar

    [14]

    Singer A, Robinson J T 2021 Adv. Healthc. Mater. 10 2100664Google Scholar

    [15]

    Saha O, Truong B D, Roundy S 2022 Smart Mater. Struct. 31 113001Google Scholar

    [16]

    施展, 南策文 2004 物理学报 53 2766Google Scholar

    Shi Z, Nan C W 2004 Acta Phys. Sin. 53 2766Google Scholar

    [17]

    代显智 2014 物理学报 63 207501Google Scholar

    Dai X Z 2014 Acta Phys. Sin. 63 207501Google Scholar

    [18]

    Li J, Wen Y, Li P, Yang J 2017 IEEE Trans. Magn. 53 2500406Google Scholar

    [19]

    Zhou J, Zhang Y, Zhang G, Liu P 2013 J. Appl. Phys. 113 043907Google Scholar

    [20]

    Zhou J, Ma Y, Zhang G, Chen X 2014 Appl. Phys. Lett. 104 202904Google Scholar

    [21]

    Zhang X, Yao X, Zhou J, Yang Z 2018 J. Mater. Sci. Mater. Electron. 29 17706Google Scholar

    [22]

    周勇, 李纯健, 潘昱融 2018 物理学报 67 077702Google Scholar

    Zhou Y, Li C J, Pan Y R 2018 Acta Phys. Sin. 67 077702Google Scholar

    [23]

    Han J, Zhang J, Gao Y 2018 J. Magn. Magn. Mater. 466 200Google Scholar

    [24]

    Stampfli R, Youssef G 2020 Int. J. Mech. Sci. 177 105573Google Scholar

    [25]

    Liu X E, Zheng X J 2005 Acta Mech. Sin. 21 278Google Scholar

    [26]

    Zhou H M, Cui X L 2014 Smart Mater. Struct. 23 105014Google Scholar

    [27]

    Yang F, Wen Y M, Li P, Zheng M, Bian L X 2008 Sens. Actuator A-Phys. 141 129Google Scholar

    [28]

    Zhou J, Yang Y, Zhang G, Peng J, Liu P 2016 Compos. Struct. 155 107Google Scholar

    [29]

    波扎尔D M著 (张肇仪, 周乐柱, 吴德明译) 2015 微波工程(北京: 电子工业出版社)第190—192页

    Pozar D M(translated by Zhang Z Y, Zhou L Z, Wu D M)2015 Microwave Engineering (Beijing: Publishing House of Electronics Industry) pp190–192 (in Chinese)

    [30]

    Saha O, Andersen E, Roundy S 2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS) Exeter, United Kingdom, December 6–8, 2021 pp36–39

    [31]

    Mukherjee D, Mallick D 2023 Appl. Phys. Lett. 122 014102Google Scholar

  • 图 1  (a) 层合磁电换能器结构示意图; (b) 压电层的局部坐标系, 与空间全局坐标系一致; (c) 磁致伸缩层的局部坐标系

    Fig. 1.  (a) Schematic a laminated magnetoelectric transducer; (b) local coordinate of the piezoelectric layer is consistent with the global coordinate; (c) local coordinate of the magnetostrictive layer.

    图 2  等效电路模型 (a) 磁-力-电耦合电路; (b) 戴维南等效电路

    Fig. 2.  Equivalent circuit model: (a) Magneto-elastic-electric coupling; (b) Thevenin equivalent circuit.

    图 3  有限元模型中各模块之间的耦合及仿真计算方案

    Fig. 3.  The coupling between each module in the finite element model and the simulation calculation scheme.

    图 4  切向压磁应变常数和切向磁导率的随偏置磁场的变化

    Fig. 4.  Variation of tangent piezomagnetic coupling coefficient and tangent magnetic susceptibility with bias magnetic fields.

    图 5  仿真结果与参考文献数据对比 (a) 低频磁电系数; (b) 谐振磁电系数

    Fig. 5.  Comparison of simulation results with reference data: (a) Low-frequency magnetoelectric coefficient; (b) resonance magnetoelectric coefficient.

    图 6  磁电换能器在不同偏置磁场下的频域响应 (a) 等效源电阻; (b) 等效源电抗; (c) 磁电系数; (d) 负载极限功率

    Fig. 6.  Frequency domain response of magnetoelectric transducer under different biased magnetic fields: (a) Equivalent source resistance; (b) equivalent source reactance; (c) magnetoelectric coefficient; (d) ultimate load power.

    图 7  引入匹配网络后的等效电路

    Fig. 7.  The equivalent circuit after the matching network is introduced.

    图 8  (a) L节匹配网络, ${\text{j}}B$${\text{j}}X$分别表示并联电纳和串联电抗; (b) 匹配网络Ⅰ; (c) 匹配网络Ⅱ

    Fig. 8.  (a) L-section matching network, ${\text{j}}B$ and ${\text{j}}X$ represent parallel susceptance and series reactance, respectively; (b) matching network Ⅰ; (c) matching network Ⅱ.

    图 9  引入匹配网络后的效果 (a) 匹配网络Ⅰ; (b) 匹配网络Ⅱ

    Fig. 9.  The effect after the introduction of the matching network: (a) Matching network Ⅰ; (b) matching network Ⅱ.

    表 1  引入匹配网络前后的性能对比

    Table 1.  Performance comparison before and after the matching network is introduced.

    匹配网络匹配元件 匹配性能
    ${L_{\text{m}}}$/mH${C_{\text{m}}}$/nF$\max {P_L}$/dBm带宽/kHz
    未匹配 –5.492.58
    ${f_0} = 48$kHz0.3820.60–3.516.98
    0.538.36–3.465.66
    ${f_0} = 50$kHz0.4024.96–3.195.86
    0.4118.38–3.155.70
    ${f_0} = 52$kHz0.6313.84–3.305.04
    0.6911.05–3.356.14
    下载: 导出CSV

    表 2  不同磁电换能器的性能指标对比

    Table 2.  Performance comparison of different magnetoelectric transducers.

    参考文献材料类型体积/mm3磁电系数
    /(${\text{V} } \cdot {\text{c} }{ {\text{m} }^{ { { - 1} } } } \cdot {\text{O} }{ {\text{e} }^{ {{ - 1} } } }$)
    负载功率*/dBm功率密度
    /(${\text{mW} } \cdot {\text{c} }{ {\text{m} }^{ {{ - 3} } } } \cdot {\text{O} }{ {\text{e} }^{ {{ - 2} } } }$)
    压电磁致伸缩
    [11,12]PZT-5AGalfenol35241.17–0.162.74
    [13]PZTGalfenol152.61N/A–2.114.03
    [30]PZT-5ANi和Metglas50.7352.00–7.853.23
    [31]PVDFMetglas1.750.133–18.548.00
    本文PZT-5HTerfenol-D10051.79–3.154.84
    注: * 为1 Oe交流磁场激励下的负载功率.
    下载: 导出CSV
  • [1]

    Wang Y, Gray D, Berry D, Gao J, Li M, Li J, Viehland D 2011 Adv. Mater. 23 4111Google Scholar

    [2]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101Google Scholar

    [3]

    Ju S, Chae S H, Choi Y, Lee S, Lee H W, Ji C H 2013 Smart Mater. Struct. 22 115037Google Scholar

    [4]

    Ryu J, Carazo A V, Uchino K, Kim H E 2001 Jpn. J. Appl. Phys. 40 4948Google Scholar

    [5]

    Dong S, Li J, Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 1253Google Scholar

    [6]

    Dong S, Li J, Viehland D 2004 J. Appl. Phys. 95 2625Google Scholar

    [7]

    Zhang X, Zhou J, Yao X, Yang Z, Zhang G 2020 J. Magn. Magn. Mater. 501 166411Google Scholar

    [8]

    Nan T, Lin H, Gao Y, Matyushov A, Yu G, Chen H, Sun N, Wei S, Wang Z, Li M, Wang X, Belkessam A, Guo R, Chen B, Zhou J, Qian Z, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296Google Scholar

    [9]

    Zaeimbashi M, Nasrollahpour M, Khalifa A, Romano A, Liang X, Chen H, Sun N, Matyushov A, Lin H, Dong C, Xu Z, Mittal A, Martos-Repath I, Jha G, Mirchandani N, Das D, Onabajo M, Shrivastava A, Cash S, Sun N X 2021 Nat. Commun. 12 3141Google Scholar

    [10]

    Truong B D 2020 IEEE Sens. J. 20 5322Google Scholar

    [11]

    Truong B D, Roundy S 2020 Smart Mater. Struct. 29 085053Google Scholar

    [12]

    Truong B D, Andersen E, Casados C, Roundy S 2020 Sens. Actuator A-Phys. 316 112269Google Scholar

    [13]

    Hosur S, Sriramdas R, Karan S K, Liu N, Priya S, Kiani M 2021 IEEE Trans. Biomed. Circuits Syst. 15 1079Google Scholar

    [14]

    Singer A, Robinson J T 2021 Adv. Healthc. Mater. 10 2100664Google Scholar

    [15]

    Saha O, Truong B D, Roundy S 2022 Smart Mater. Struct. 31 113001Google Scholar

    [16]

    施展, 南策文 2004 物理学报 53 2766Google Scholar

    Shi Z, Nan C W 2004 Acta Phys. Sin. 53 2766Google Scholar

    [17]

    代显智 2014 物理学报 63 207501Google Scholar

    Dai X Z 2014 Acta Phys. Sin. 63 207501Google Scholar

    [18]

    Li J, Wen Y, Li P, Yang J 2017 IEEE Trans. Magn. 53 2500406Google Scholar

    [19]

    Zhou J, Zhang Y, Zhang G, Liu P 2013 J. Appl. Phys. 113 043907Google Scholar

    [20]

    Zhou J, Ma Y, Zhang G, Chen X 2014 Appl. Phys. Lett. 104 202904Google Scholar

    [21]

    Zhang X, Yao X, Zhou J, Yang Z 2018 J. Mater. Sci. Mater. Electron. 29 17706Google Scholar

    [22]

    周勇, 李纯健, 潘昱融 2018 物理学报 67 077702Google Scholar

    Zhou Y, Li C J, Pan Y R 2018 Acta Phys. Sin. 67 077702Google Scholar

    [23]

    Han J, Zhang J, Gao Y 2018 J. Magn. Magn. Mater. 466 200Google Scholar

    [24]

    Stampfli R, Youssef G 2020 Int. J. Mech. Sci. 177 105573Google Scholar

    [25]

    Liu X E, Zheng X J 2005 Acta Mech. Sin. 21 278Google Scholar

    [26]

    Zhou H M, Cui X L 2014 Smart Mater. Struct. 23 105014Google Scholar

    [27]

    Yang F, Wen Y M, Li P, Zheng M, Bian L X 2008 Sens. Actuator A-Phys. 141 129Google Scholar

    [28]

    Zhou J, Yang Y, Zhang G, Peng J, Liu P 2016 Compos. Struct. 155 107Google Scholar

    [29]

    波扎尔D M著 (张肇仪, 周乐柱, 吴德明译) 2015 微波工程(北京: 电子工业出版社)第190—192页

    Pozar D M(translated by Zhang Z Y, Zhou L Z, Wu D M)2015 Microwave Engineering (Beijing: Publishing House of Electronics Industry) pp190–192 (in Chinese)

    [30]

    Saha O, Andersen E, Roundy S 2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS) Exeter, United Kingdom, December 6–8, 2021 pp36–39

    [31]

    Mukherjee D, Mallick D 2023 Appl. Phys. Lett. 122 014102Google Scholar

  • [1] 李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥. 双层螺旋环超表面复合吸波体等效电路模型及微波损耗机制. 物理学报, 2019, 68(9): 095201. doi: 10.7498/aps.68.20181960
    [2] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 二次电子倍增对射频平板腔建场过程的影响. 物理学报, 2018, 67(17): 177902. doi: 10.7498/aps.67.20180656
    [3] 闫晓娟, 马维光, 谭巍. 外腔共振和频系统中阻抗匹配的理论研究. 物理学报, 2016, 65(4): 044207. doi: 10.7498/aps.65.044207
    [4] 陈姝媛, 阮存军, 王勇. 带状注速调管多间隙扩展互作用输出腔等效电路的研究. 物理学报, 2014, 63(2): 028402. doi: 10.7498/aps.63.028402
    [5] 赵凯, 牟宗信, 张家良. 同轴介质阻挡放电发生器介质层等效电容和负载特性研究. 物理学报, 2014, 63(18): 185208. doi: 10.7498/aps.63.185208
    [6] 王秀芝, 高劲松, 徐念喜. 利用等效电路模型快速分析加载集总元件的微型化频率选择表面. 物理学报, 2013, 62(20): 207301. doi: 10.7498/aps.62.207301
    [7] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [8] 胡丰伟, 包伯成, 武花干, 王春丽. 荷控忆阻器等效电路分析模型及其电路特性研究. 物理学报, 2013, 62(21): 218401. doi: 10.7498/aps.62.218401
    [9] 吴超, 吕绪良, 曾朝阳, 贾其. 基于阻抗模拟的等效电磁参数研究. 物理学报, 2013, 62(5): 054101. doi: 10.7498/aps.62.054101
    [10] 胡永刚, 夏风, 肖建中, 雷超, 李向东. 基于阻抗模型解析的氧化锆固体电解质组织结构演变模型. 物理学报, 2012, 61(9): 098102. doi: 10.7498/aps.61.098102
    [11] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [12] 鲍丙豪, 骆英. 有限输入阻抗下压电/磁伸层叠材料磁电效应理论及实验. 物理学报, 2011, 60(1): 017508. doi: 10.7498/aps.60.017508
    [13] 张燕萍, 赵晓鹏, 保石, 罗春荣. 基于阻抗匹配条件的树枝状超材料吸收器. 物理学报, 2010, 59(9): 6078-6083. doi: 10.7498/aps.59.6078
    [14] 王争, 赵新杰, 何明, 周铁戈, 岳宏卫, 阎少林. 嵌入到Fabry-Perot谐振腔的双晶约瑟夫森结阵列的阻抗匹配和相位锁定研究. 物理学报, 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [15] 阳昌海, 文玉梅, 李 平, 卞雷祥. 偏置磁场对磁致伸缩/弹性/压电层合材料磁电效应的影响. 物理学报, 2008, 57(11): 7292-7297. doi: 10.7498/aps.57.7292
    [16] 辛宏梁, 袁望治, 程金科, 林 宏, 阮建中, 赵振杰. NiFeCoP/BeCu复合结构丝的巨磁阻抗效应和磁化频率特性. 物理学报, 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [17] 万 红, 谢立强, 吴学忠, 刘希从. TbDyFe/PZT层状复合材料的磁电效应研究. 物理学报, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [18] 万 红, 沈仁发, 吴学忠. 对称磁电层合板磁电转换效应理论研究. 物理学报, 2005, 54(3): 1426-1430. doi: 10.7498/aps.54.1426
    [19] 李洪奇. 介观压电石英晶体等效电路的量子化. 物理学报, 2005, 54(3): 1361-1365. doi: 10.7498/aps.54.1361
    [20] 王均宏. 脉冲电压电流沿偶极天线传播过程的等效电路法分析. 物理学报, 2000, 49(9): 1696-1701. doi: 10.7498/aps.49.1696
计量
  • 文章访问数:  4494
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-04-10
  • 上网日期:  2023-04-14
  • 刊出日期:  2023-06-05

/

返回文章
返回