搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双线性双滞后环系统的约束分岔

吴志强 张振华 郝颖

引用本文:
Citation:

双线性双滞后环系统的约束分岔

吴志强, 张振华, 郝颖

Constrained bifurcations of the system with double-loop bilinear hysteresis

Wu Zhi-Qiang, Zhang Zhen-Hua, Hao Ying
PDF
导出引用
  • 含双滞后环力-位移关系的系统在工程中有增多的趋势,但相关的动力学研究还较少.以形状记忆合金减振系统为背景,研究了双线性双滞后环系统的主共振分岔问题.首先用平均法求得了正弦激励下系统主共振幅频响应方程.然后利用非光滑系统的约束分岔理论,讨论了环境温度和外激励幅值变化对幅频响应曲线的影响.结果表明:环境温度和外激励幅值组成的参数平面可分成11个区域,每个区域对应一种定性不同的幅频响应解.此外,为便于幅频响应图的描述和比较,提出了一种编码规则来描述响应在扫频时的跳跃现象.这对于系统频响模式的设计具有直接的指导作用.
    Systems with double-loop hysteresis are used increasingly in engineering, but few studies on their dynamics are reported. In this study, the bifurcation characteristics of the primary resonance of a system with double-loop bilinear hysteresis are investigated on the background of a shape memory alloy damper. First, the frequency-amplitude response equation is obtained by using the averaging methods. Then, the influences of the temperature and the amplitude of excitation on amplitude-frequency responses are analyzed by the constrained bifurcation singularity analysis method of non-smooth systems. The calculation results show that the parameter space composed of the temperature and the amplitude of excitation can be divided into 11 regions, which suggest that there are 11 qualitatively different kinds of amplitude-frequency responses to the variation of two parameters. In order to describe and compare the frequency-amplitude response curves conveniently, an encoding rule is proposed to describe their jump phenomena as the frequency sweeps. The above results can guide directly the design of frequency response mode of the system.
    • 基金项目: 国家自然科学基金(批准号:10872142,10472078)、教育部新世纪优秀人才支持计划(批准号:NCET-15-0247)、高等学校博士学科点专项科研基金(批准号:2009003211005)和天津市自然科学基金重点项目(批准号:09JCZDJC26800)资助的课题.
    [1]

    Zhang W, Hu H Y 2009 New Development of Nonlinear Dynamic Theory and Applications (Beijing: Science Press) p142 (in Chinese)[张 伟、胡海岩 2009 非线性动力学理论和应用的新进展 (北京:科学出版社) 第142页]

    [2]
    [3]

    Li G J, Xu W, Wang L, Feng J Q 2008 Acta Phys. Sin. 57 2107 (in Chinese)[李高杰、徐 伟、王 亮、冯进钤 2008 物理学报 57 2107]

    [4]

    Li S H, Yang S P 2006 J. Dynam. Contr. 4 8 (in Chinese) [李韶华、杨绍普 2006 动力学与控制学报 4 8]

    [5]
    [6]

    Wu Z Q, Yu P, Wang K Q 2004 Int. J. Bifur. Chaos 14 2825

    [7]
    [8]

    Chen Z, Wu Z Q, Yu P 2005 J. Sound Vib. 284 783

    [9]
    [10]

    Huang C T, Kuo S Y 2006 Int. J. Nonlin. Mech. 41 888

    [11]
    [12]
    [13]

    Fragiacomo M, Rajgelj S, Cimadom F 2003 Earthq. Eng. Struct. Dyn. 32 1333

    [14]

    Katsaras C P, Panagiotakos T B, Kolias B 2008 Earthq. Eng. Struct. Dyn. 37 557

    [15]
    [16]

    Christopoulos C 2004 J. Eng. Mech. ASCE 130 894

    [17]
    [18]

    Lau S M L, Lau K T, Yin Y S, Li L, Wong M, Chan K, Chen W 2010 Mater. Manuf. Process. 25 281

    [19]
    [20]
    [21]

    Williams K A, Chiu G T C, Bernhard R J 2005 J. Sound Vib. 280 211

    [22]

    Rustighi E, Brennan M J, Mace B R 2005 Smart Mater. Struct. 4 19

    [23]
    [24]

    Chou C C, Tsai K C, Yang W C 2009 Earthq. Eng. Struct. Dyn. 38 403

    [25]
    [26]

    Stanton J F, Stone W C, Cheok G S 1997 PCI J. 42 20

    [27]
    [28]

    Priestley M J N, Sritharan S, Conley J R, Pampanin S 1999 PCI J. 44 42

    [29]
    [30]
    [31]

    Christopoulos C, Tremblay R, Kim H J, Lacerte M 2008 J. Struct. Eng. ASCE 134 96

    [32]
    [33]

    Li H G, Zhang J W, Wen B C 2002 Mech. Res. Commun. 29 283

    [34]
    [35]

    Motahari S A, Ghassemieh M 2007 Eng. Struct. 29 904

  • [1]

    Zhang W, Hu H Y 2009 New Development of Nonlinear Dynamic Theory and Applications (Beijing: Science Press) p142 (in Chinese)[张 伟、胡海岩 2009 非线性动力学理论和应用的新进展 (北京:科学出版社) 第142页]

    [2]
    [3]

    Li G J, Xu W, Wang L, Feng J Q 2008 Acta Phys. Sin. 57 2107 (in Chinese)[李高杰、徐 伟、王 亮、冯进钤 2008 物理学报 57 2107]

    [4]

    Li S H, Yang S P 2006 J. Dynam. Contr. 4 8 (in Chinese) [李韶华、杨绍普 2006 动力学与控制学报 4 8]

    [5]
    [6]

    Wu Z Q, Yu P, Wang K Q 2004 Int. J. Bifur. Chaos 14 2825

    [7]
    [8]

    Chen Z, Wu Z Q, Yu P 2005 J. Sound Vib. 284 783

    [9]
    [10]

    Huang C T, Kuo S Y 2006 Int. J. Nonlin. Mech. 41 888

    [11]
    [12]
    [13]

    Fragiacomo M, Rajgelj S, Cimadom F 2003 Earthq. Eng. Struct. Dyn. 32 1333

    [14]

    Katsaras C P, Panagiotakos T B, Kolias B 2008 Earthq. Eng. Struct. Dyn. 37 557

    [15]
    [16]

    Christopoulos C 2004 J. Eng. Mech. ASCE 130 894

    [17]
    [18]

    Lau S M L, Lau K T, Yin Y S, Li L, Wong M, Chan K, Chen W 2010 Mater. Manuf. Process. 25 281

    [19]
    [20]
    [21]

    Williams K A, Chiu G T C, Bernhard R J 2005 J. Sound Vib. 280 211

    [22]

    Rustighi E, Brennan M J, Mace B R 2005 Smart Mater. Struct. 4 19

    [23]
    [24]

    Chou C C, Tsai K C, Yang W C 2009 Earthq. Eng. Struct. Dyn. 38 403

    [25]
    [26]

    Stanton J F, Stone W C, Cheok G S 1997 PCI J. 42 20

    [27]
    [28]

    Priestley M J N, Sritharan S, Conley J R, Pampanin S 1999 PCI J. 44 42

    [29]
    [30]
    [31]

    Christopoulos C, Tremblay R, Kim H J, Lacerte M 2008 J. Struct. Eng. ASCE 134 96

    [32]
    [33]

    Li H G, Zhang J W, Wen B C 2002 Mech. Res. Commun. 29 283

    [34]
    [35]

    Motahari S A, Ghassemieh M 2007 Eng. Struct. 29 904

  • [1] 张大军. 可积系统的双线性约化方法. 物理学报, 2023, 72(10): 100203. doi: 10.7498/aps.72.20230063
    [2] 赵武, 张鸿斌, 孙超凡, 黄丹, 范俊锴. 受垂直激励和水平约束的单摆系统亚谐共振分岔与混沌. 物理学报, 2021, 70(24): 240202. doi: 10.7498/aps.70.20210953
    [3] 张迪, 张银星, 邱小芬, 祝光湖, 李科赞. 非一致通信时滞动力学网络上的接连滞后同步. 物理学报, 2018, 67(1): 018901. doi: 10.7498/aps.67.20171630
    [4] 曹万强, 刘培朝, 陈勇, 潘瑞琨, 祁亚军. 铁电体中偶极子的滞后对剩余极化的影响. 物理学报, 2016, 65(13): 137701. doi: 10.7498/aps.65.137701
    [5] 李新宇, 代正华, 徐月亭, 李超, 王辅臣. 甲烷/氧气层流反扩散火焰形态及滞后特性研究. 物理学报, 2015, 64(2): 024704. doi: 10.7498/aps.64.024704
    [6] 谢媛艳, 王毅, 马忠军. 领导-跟随多智能体系统的滞后一致性. 物理学报, 2014, 63(4): 040202. doi: 10.7498/aps.63.040202
    [7] 陈湘, 陈云贵, 唐永柏, 肖定全, 李道华. 一级相变磁制冷材料的基础问题探究. 物理学报, 2014, 63(14): 147502. doi: 10.7498/aps.63.147502
    [8] 张丽, 杨晓丽, 孙中奎. 噪声环境下时滞耦合网络的广义投影滞后同步. 物理学报, 2013, 62(24): 240502. doi: 10.7498/aps.62.240502
    [9] 王奔, 念敬妍, 铁璐, 张亚斌, 郭志光. 稳定超疏水性表面的理论进展. 物理学报, 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [10] 支蓉, 龚志强, 王启光, 熊开国. 时间滞后对全球温度场关联性的影响. 物理学报, 2011, 60(8): 089202. doi: 10.7498/aps.60.089202
    [11] 曾广胜, 瞿金平, 刘跃军, 许超, 徐成. 外场作用下聚合物滞后生热效应. 物理学报, 2011, 60(1): 016401. doi: 10.7498/aps.60.016401
    [12] 侯东晓, 刘彬, 时培明. 一类滞后相对转动动力学方程的分岔特性及其解析近似解. 物理学报, 2009, 58(9): 5942-5949. doi: 10.7498/aps.58.5942
    [13] 李高杰, 徐 伟, 王 亮, 冯进钤. 双边约束条件下随机van der Pol系统的分岔研究. 物理学报, 2008, 57(4): 2107-2114. doi: 10.7498/aps.57.2107
    [14] 马铁东, 张化光, 王智良. 一类参数不确定统一混沌系统的脉冲滞后同步. 物理学报, 2007, 56(7): 3796-3802. doi: 10.7498/aps.56.3796
    [15] 冯进钤, 徐 伟, 王 蕊. 随机Duffing单边约束系统的倍周期分岔. 物理学报, 2006, 55(11): 5733-5739. doi: 10.7498/aps.55.5733
    [16] 邵元智, 蓝图, 林光明. 混合Heisenberg自旋体系动态相变的滞后标度. 物理学报, 2001, 50(5): 948-952. doi: 10.7498/aps.50.948
    [17] 钟凡, 张进修. 缺陷对滞后标度性的影响. 物理学报, 1997, 46(4): 791-795. doi: 10.7498/aps.46.791
    [18] 许宗荣, 高艳玲. 量子散射跃迁矩阵元的双线性变分法. 物理学报, 1995, 44(1): 24-28. doi: 10.7498/aps.44.24
    [19] 张武, 王燕. 光学非均匀复合材料的多元滞后器模型. 物理学报, 1994, 43(8): 1380-1385. doi: 10.7498/aps.43.1380
    [20] 楼森岳, 俞军, 翁建平, 钱贤民. 2+1维双线性Sawada-Kotera方程的对称结构. 物理学报, 1994, 43(7): 1050-1055. doi: 10.7498/aps.43.1050
计量
  • 文章访问数:  6070
  • PDF下载量:  587
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-13
  • 修回日期:  2011-08-12
  • 刊出日期:  2011-06-05

/

返回文章
返回