-
对空气气氛中甲烷/氧气反扩散火焰的形态和推举滞后特性进行了实验研究. 实验中通过改变气体流量考察了气速变化对火焰形态演变及滞后特性的影响, 并利用紫外相机系统研究了气速对不同形态火焰中OH*分布的影响. 研究结果表明: 甲烷气速、氧气气速和火焰的历史状态是决定火焰形态的三个重要参数, 并以此对实验范围内的火焰形态进行了分区; 氧气气速对不同形态反扩散火焰轴线上的OH*分布有相似的影响, 当氧气缺乏时, 反扩散反应区较短, 当氧气富余时, 反扩散反应区在轴向分布较广; 同轴甲烷的气速对反扩散火焰的滞后特性影响显著, 随着甲烷气速的增加, 反扩散火焰的推举速度和再附着速度呈线性减小, 部分预混火焰向反扩散火焰转变的速度呈线性增加.Flame modes and liftoff hysteresis of the methane/oxygen inverse diffusion flame (IDF) are experimentally studied in still air. The effects of gas velocity on flame mode and liftoff hysteresis are investigated by changing the gas flow rate, and the influences of gas velocity on OH* distribution in different modes of flame are investigated using an ultraviolet camera. The results show that methane velocity, oxygen velocity and history of the flame mode are the key factors in determining the flame mode. Flame mode regimes are identified according to the three factors. The OH* profile along the axis of the nozzle in the IDF indicates that the reaction zone is narrow in fuel rich condition and broad in fuel lean condition. The hysteresis characteristics of the IDF are significantly influenced by the coaxial methane velocity. With the increase of coaxial methane velocity, the liftoff velocity and attachment velocity of the IDF decrease linearly, while the transition velocity increases linearly from partly premixed flame to IDF.
-
Keywords:
- inverse diffusion flame /
- liftoff /
- hysteresis /
- oxy-combustion
[1] Lin C K, Jeng M S, Chao Y C 1993 Exp. Fluids 14 353
[2] Chung S H 2007 Proc. Combust. Inst. 31 877
[3] Lyons K M 2007 Prog. Energy Combust. Sci. 33 211
[4] Scholefield D A, Garsie J E 1949 Third Symposium on Combustion, Flame, and Explosion Penomena (Massachusetts: The Massachusetts Institute of Technology Cambrige) p102
[5] Gollahalli S R, Savas O, Huang R F, Rodriquez Azara J L 1988 Symposium (International) on Combustion 21 1463
[6] Demare D, Baillot F 2001 Phys. Fluids 13 2662
[7] Lee J, Chung S H 2001 Combust. Flame 127 2194
[8] Lee J, Won S H, Jin S H, Chung S H 2003 Combust. Flame 135 449
[9] Terry S D, Lyons K M 2006 J. Energy Resour. Technol 128 319
[10] Iyogun C O, Birouk M 2008 Combust. Sci. Technol. 180 2186
[11] Sze L K, Cheung C S, Leung C W 2006 Combust. Flame 144 237
[12] Jin P, Li M, Cai G B 2013 Chin. Phys. B 22 044701
[13] Stelzner B, Hunger F, Voss S, Keller J, Hasse C, Trimis D 2013 Proc. Combust. Inst. 34 1045
[14] Wu K T, Essenhigh R H 1985 Symposium (International) on Combustion 20 1925
[15] Takagi T, Xu Z, Komiyama M 1996 Combust. Flame 106 252
[16] Qiu X L, Long Q, Wu Y X, Zhang H, L J F 2011 Proceeding of Chinese Society of Engineering Thermophysics on Engine Aero Combustion Hangzhou, November 27-30, 2011 p1 (in Chinese) [仇晓龙, 龙泉, 吴玉新, 张海, 吕俊复 2011 2011年中国工程热物理学会热机气动燃烧学学术会议论文集 杭州, 2011年11月27–30日, 2011第1页]
[17] Sobiesiak A, Wenzell J C 2005 Proc. Combust. Inst. 30 743
[18] Sze L K, Cheung C S, Leung C W 2004 Int. J. Heat Mass Transfer 47 3119
[19] Mikofski M A, Williams T C, Shaddix C R, Fernandezpello A C, Blevins L G 2007 Combust. Flame 149 463
[20] Shaddix C R, Williams T C, Blevins L G, Schefer R W 2005 Proc. Combust. Inst. 30 1501
[21] Mikofski M A, Williams T C, Shaddix C R, Blevins L G 2006 Combust. Flame 146 63
[22] Elbaz A M, Roberts W L 2014 Exp. Therm Fluid Sci. 56 23
[23] Liu F, Smallwood G J 2011 Proc. Combust. Inst. 33 1063
[24] Johnson M B, Sobiesiak A 2011 Proc. Combust. Inst. 33 1079
[25] Joedicke A, Peters N, Mansour M 2005 Proc. Combust. Inst. 30 901
[26] Lawn C J 2009 Prog. Energy Combust. Sci. 35 1
-
[1] Lin C K, Jeng M S, Chao Y C 1993 Exp. Fluids 14 353
[2] Chung S H 2007 Proc. Combust. Inst. 31 877
[3] Lyons K M 2007 Prog. Energy Combust. Sci. 33 211
[4] Scholefield D A, Garsie J E 1949 Third Symposium on Combustion, Flame, and Explosion Penomena (Massachusetts: The Massachusetts Institute of Technology Cambrige) p102
[5] Gollahalli S R, Savas O, Huang R F, Rodriquez Azara J L 1988 Symposium (International) on Combustion 21 1463
[6] Demare D, Baillot F 2001 Phys. Fluids 13 2662
[7] Lee J, Chung S H 2001 Combust. Flame 127 2194
[8] Lee J, Won S H, Jin S H, Chung S H 2003 Combust. Flame 135 449
[9] Terry S D, Lyons K M 2006 J. Energy Resour. Technol 128 319
[10] Iyogun C O, Birouk M 2008 Combust. Sci. Technol. 180 2186
[11] Sze L K, Cheung C S, Leung C W 2006 Combust. Flame 144 237
[12] Jin P, Li M, Cai G B 2013 Chin. Phys. B 22 044701
[13] Stelzner B, Hunger F, Voss S, Keller J, Hasse C, Trimis D 2013 Proc. Combust. Inst. 34 1045
[14] Wu K T, Essenhigh R H 1985 Symposium (International) on Combustion 20 1925
[15] Takagi T, Xu Z, Komiyama M 1996 Combust. Flame 106 252
[16] Qiu X L, Long Q, Wu Y X, Zhang H, L J F 2011 Proceeding of Chinese Society of Engineering Thermophysics on Engine Aero Combustion Hangzhou, November 27-30, 2011 p1 (in Chinese) [仇晓龙, 龙泉, 吴玉新, 张海, 吕俊复 2011 2011年中国工程热物理学会热机气动燃烧学学术会议论文集 杭州, 2011年11月27–30日, 2011第1页]
[17] Sobiesiak A, Wenzell J C 2005 Proc. Combust. Inst. 30 743
[18] Sze L K, Cheung C S, Leung C W 2004 Int. J. Heat Mass Transfer 47 3119
[19] Mikofski M A, Williams T C, Shaddix C R, Fernandezpello A C, Blevins L G 2007 Combust. Flame 149 463
[20] Shaddix C R, Williams T C, Blevins L G, Schefer R W 2005 Proc. Combust. Inst. 30 1501
[21] Mikofski M A, Williams T C, Shaddix C R, Blevins L G 2006 Combust. Flame 146 63
[22] Elbaz A M, Roberts W L 2014 Exp. Therm Fluid Sci. 56 23
[23] Liu F, Smallwood G J 2011 Proc. Combust. Inst. 33 1063
[24] Johnson M B, Sobiesiak A 2011 Proc. Combust. Inst. 33 1079
[25] Joedicke A, Peters N, Mansour M 2005 Proc. Combust. Inst. 30 901
[26] Lawn C J 2009 Prog. Energy Combust. Sci. 35 1
计量
- 文章访问数: 6629
- PDF下载量: 460
- 被引次数: 0