搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

122型铁基超导线带材实用化研究进展

徐光显 黄河 张现平 黄尚宇 马衍伟

引用本文:
Citation:

122型铁基超导线带材实用化研究进展

徐光显, 黄河, 张现平, 黄尚宇, 马衍伟

Recent progress of 122-type iron-based superconducting wires and tapes

Xu Guang-Xian, Huang He, Zhang Xian-Ping, Huang Shang-Yu, Ma Yan-Wei
PDF
导出引用
  • 在种类众多的新型铁基超导材料中,122型铁基超导体具有高转变温度、超高上临界场、低各向异性、高临界电流密度等优点,因此成为高场应用领域最具竞争力的铁基超导材料.目前122型铁基超导线带材在4.2 K,10 T下的传输临界电流密度已经超过105A/cm2这一实用化门槛值,表现出十分广阔的应用前景.本文回顾了新型铁基超导体的发现及发展历程,结合122型铁基超导体的自身特点,就如何制备高性能122型铁基超导线带材展开讨论,同时对粉末装管法制备流程中影响线带材性能的几大关键因素进行了详细分析.重点介绍了近年来122型铁基超导线带材的实用化研究进展,包括高强度线带材的制备、圆线的研制、多芯线材及长线的制备、超导接头的研究、力学性能及各向异性的研究等.对122型铁基超导线带材实用化研究进行了总结,并对其未来的发展趋势进行了展望.
    With high transition temperature Tc (~38 K), high upper critical field Hc2 ( 100 T), superior transport Jc (~106 A/cm2) and extremely small anisotropy (1.5-2.0), the 122-type iron-based superconductors show great promise in high-field applications such as next-generation high energy physics accelerator and high-field magnetic resonance imaging (MRI). Power-in-tube (PIT) method is widely adopted to fabricate the iron-based superconducting wires and tapes due to low cost and easiness of large-scale fabrication. In the past few years, substantial efforts have been made to improve the transport performances of 122-type iron-based superconducting wires and tapes by ex-situ PIT technique. In this review, the recent progress of 122-type iron-based superconducting wires and tapes is presented. Firstly, we focus on the techniques for fabricating high-performance 122-type wires and tapes. We also discuss the key factors affecting the final performances of wires and tapes during the PIT process, including the preparation of high-quality precursor, the effect of chemical doping, the improvement of core density and grain connection. Recently, due to the improving of degree of c-axis texture and connectivity of grains, the transport Jc value of 122/Ag tapes reached 1.5105 A/cm2 at 4.2 K and 10 T, which exceeds the practical level of 105 A/cm2 and demonstrates their promise in high-field applications. Then, the progress of practical application of 122-type wires and tapes is summarized. In order to reduce the fabrication cost and improve the mechanical strengths of superconducting wires and tapes, an additional outer sheath such as Fe, Cu and stainless steel was used in combination with Ag. Besides, a favourable transport Jc was also obtained in the Cu-, or Fe-sheathed 122 tapes. For round wires, the highest Jc value reached 3.8104 A/cm2 in Cu/Ag composite sheathed wires at 4.2 K and 10 T, obtained by the hot-isostatic-press technology. From the viewpoint of practicality, the fabrication of multifilamentary wires and tapes is an indispensable step. The 7-, 19-and 114-filament 122 wires and tapes were successfully fabricated by the PIT method, and these multifilamentary tapes exhibited weak field dependence of Jc. Based on the experience of high-performance short samples and multifilamentary wires process, the scalable rolling process has been used to produce the first 115-m-long 7-filament Sr1-xKxFe2As2/Ag superconducting tape, confirming the great potential for large-scale manufacture. Moreover, the mechanical property, anisotropy and superconducting joint of 122 tapes are also studied. Finally, a perspective for the future development of 122-type wires and tapes in practical applications is given.
      通信作者: 马衍伟, ywma@mail.iee.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51320105015,51602307,51677179)和北京市科技计划(批准号:Z171100002017006)资助的课题.
      Corresponding author: Ma Yan-Wei, ywma@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51320105015, 51602307, 51677179) and the Beijing Municipal Science and Technology Commission, China (Grant No. Z171100002017006).
    [1]

    Bednorz J G, Mller K A 1986 Z. Phys. B: Condens. Matter 64 189

    [2]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [3]

    Chen G F, Li Z, Li G, Zhou J, Wu D, Dong J, Hu W Z, Zheng P, Chen Z J, Yuan H Q, Singleton J, Luo J L, Wang N L 2008 Phys. Rev. Lett. 101 057007

    [4]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [5]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [6]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [7]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262

    [8]

    Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L, Mao Z Q 2008 Phys. Rev. B 78 224503

    [9]

    Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y, Jin C Q 2008 Solid State Commun. 148 538

    [10]

    Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520

    [11]

    Jaroszynski J, Hunte F, Balicas L, Jo Y J, Raičević I, Gurevich A, Larbalestier D C, Balakirev F F, Fang L, Cheng P, Jia Y, Wen H H 2008 Phys. Rev. B 78 174523

    [12]

    Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L, Wang N L 2009 Nature 457 565

    [13]

    Ivanovskii A L 2008 Phys. Usp. 51 1229

    [14]

    Ma Y W 2015 Physica C 516 17

    [15]

    Togano K, Matsumoto A, Kumakura H 2011 Appl. Phys. Express 4 043101

    [16]

    Sato K, Kobayashi S, Nakashima T 2012 Jpn. J. Appl. Phys. 51 010006

    [17]

    Abetti P A 2009 Int. J. Technol. Manage. 48 423

    [18]

    Wang L, Qi Y P, Wang D L, Gao Z S, Zhang X P, Zhang Z Y, Wang C L, Ma Y W 2010 Supercond. Sci. Technol. 23 075005

    [19]

    Wang L, Ma Y W, Wang Q X, Li K, Zhang X X, Qi Y P, Gao Z S, Zhang X P, Wang D L, Yao C, Wang C L 2011 Appl. Phys. Lett. 98 222504

    [20]

    Wang C, Gao Z, Yao C, Wang L, Qi Y, Wang D, Zhang X, Ma Y 2011 Supercond. Sci. Technol. 24 065002

    [21]

    Dong C H, Yao C, Lin H, Zhang X P, Zhang Q J, Wang D L, Ma Y W, Oguro H, Awaji S, Watanabe K 2015 Scr. Mater. 99 33

    [22]

    Wang C, Wang L, Gao Z, Yao C, Wang D, Qi Y, Zhang X, Ma Y 2011 Appl. Phys. Lett. 98 042508

    [23]

    Wang L, Qi Y P, Wang D L, Zhang X P, Gao Z S, Zhang Z Y, Ma Y W, Awaji S, Nishijima G, Watanabe K 2010 Physica C 470 183

    [24]

    Qi Y, Wang L, Wang D, Zhang Z, Gao Z, Zhang X, Ma Y 2010 Supercond. Sci. Technol. 23 055009

    [25]

    Yao C, Wang C L, Zhang X P, Wang L, Gao Z S, Wang D L, Wang C D, Qi Y P, Ma Y W, Awaji S, Watanabe K 2012 Supercond. Sci. Technol. 25 035020

    [26]

    Gao Z, Wang L, Yao C, Qi Y, Wang C, Zhang X, Wang D, Wang C, Ma Y 2011 Appl. Phys. Lett. 99 242506

    [27]

    Lin H, Yao C, Zhang X P, Zhang H T, Wang D L, Zhang Q J, Ma Y W 2013 Physica C 495 48

    [28]

    Lin H, Yao C, Zhang X P, Zhang H T, Zhang Q J, Wang D L, Dong C H, Ma Y W 2016 Scr. Mater. 112 128

    [29]

    Weiss J D, Tarantini C, Jiang J, Kametani F, Polyanskii A A, Larbalestier D C, Hellstrom E E 2012 Nat. Mater. 11 682

    [30]

    Pyon S, Tsuchiya Y, Inoue H, Kajitani H, Koizumi N, Awaji S, Watanabe K, Tamegai T 2014 Supercond. Sci. Technol. 27 095002

    [31]

    Gao Z S, Ma Y W, Yao C, Zhang X P, Wang C L, Wang D L, Awaji S, Watanabe K 2012 Sci. Rep. 2 998

    [32]

    Yao C, Lin H, Zhang X P, Dong C H, Wang D L, Zhang Q J, Ma Y W, Awaji S, Watanabe K 2015 IEEE Trans. Appl. Supercond. 25 7300204

    [33]

    Zhang X P, Yao C, Lin H, Cai Y, Chen Z, Li J Q, Dong C H, Zhang Q J, Wang D L, Ma Y W, Oguro H, Awaji S, Watanabe K 2014 Appl. Phys. Lett. 104 202601

    [34]

    Lin H, Yao C, Zhang X, Dong C, Zhang H, Wang D, Zhang Q, Ma Y, Awaji S, Watanabe K, Tian H, Li J 2014 Sci. Rep. 4 6944

    [35]

    Huang H, Yao C, Dong C H, Zhang X P, Wang D L, Cheng Z, Li J Q, Awaji S, Wen H H, Ma Y W 2018 Supercond. Sci. Technol. 31 015017

    [36]

    Gao Z S, Wang L, Qi Y P, Wang D L, Zhang X P, Ma Y W 2008 Supercond. Sci. Technol. 21 105024

    [37]

    Gao Z S, Wang L, Qi Y P, Wang D L, Zhang X P, Ma Y W, Yang H, Wen H H 2008 Supercond. Sci. Technol. 21 112001

    [38]

    Qi Y P, Zhang X P, Gao Z S, Zhang Z Y, Wang L, Wang D L, Ma Y W 2009 Physica C 469 717

    [39]

    Wang L, Qi Y P, Zhang X P, Wang D L, Gao Z S, Wang C L, Yao C, Ma Y W 2011 Physica C 471 1689

    [40]

    Lin K L, Yao C, Zhang X P, Zhang Q J, Huang H, Li C, Wang D L, Dong C H, Ma Y W, Awaji S, Watanabe K 2016 Supercond. Sci. Technol. 29 095006

    [41]

    Togano K, Gao Z, Matsumoto A, Kikuchi A, Kumakura H 2017 Supercond. Sci. Technol. 30 015012

    [42]

    Yao C, Wang D L, Huang H, Dong C H, Zhang X P, Ma Y W, Awaji S 2017 Supercond. Sci. Technol. 30 075010

    [43]

    Gao Z S, Togano K, Matsumoto A, Kumakura H 2015 Supercond. Sci. Technol. 28 012001

    [44]

    Gao Z S, Togano K, Zhang Y C, Matsumoto A, Kikuchi A, Kumakura H 2017 Supercond. Sci. Technol. 30 095012

    [45]

    Ding Q P, Prombood T, Tsuchiya Y, Nakajima Y, Tamegai T 2012 Supercond. Sci. Technol. 25 035019

    [46]

    Pyon S, Yamasaki Y, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K, Tamegai T 2015 Supercond. Sci. Technol. 28 125014

    [47]

    Pyon S, Suwa T, Park A, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K, Tamegai T 2016 Supercond. Sci. Technol. 29 115002

    [48]

    Pyon S, Suwa T, Tamegai T, Takano K, Kajitani H, Koizumi N, Awaji S, Zhou N, Shi Z 2018 Supercond. Sci. Technol. 31 055016

    [49]

    Liu S F, Lin K L, Yao C, Zhang X P, Dong C H, Wang D L, Awaji S, Kumakura H, Ma Y W 2017 Supercond. Sci. Technol. 30 115007

    [50]

    Yao C, Ma Y W, Zhang X P, Wang D L, Wang C L, Lin H, Zhang Q J 2013 Appl. Phys. Lett. 102 082602

    [51]

    Yao C, Lin H, Zhang Q J, Zhang X P, Wang D L, Dong C H, Ma Y W, Awaji S, Watanabe K 2015 J. Appl. Phys. 118 203909

    [52]

    Zhang X P, Oguro H, Yao C, Dong C H, Xu Z T, Wang D L, Awaji S, Watanabe K, Ma Y W 2017 IEEE Trans. Appl. Supercond. 27 7300705

    [53]

    Hosono H, Yamamoto A, Hiramatsu H, Ma Y 2018 Mater. Today 21 278

    [54]

    Kovč P, Kopera L, Meliek T, Kulich M, Huek I, Lin H, Yao C, Zhang X, Ma Y 2015 Supercond. Sci. Technol. 28 035007

    [55]

    Liu F, Yao C, Liu H, Dai C, Qin J, Ci L, Mao Z, Zhou C, Shi Y, Jin H, Wang D, Ma Y 2017 Supercond. Sci. Technol. 30 07LT01

    [56]

    Awaji S, Nakazawa Y, Oguro H, Tsuchiya Y, Watanabe K, Shimada Y, Lin H, Yao C, Zhang X, Ma Y 2017 Supercond. Sci. Technol. 30 035018

    [57]

    Zhu Y, Wang D, Zhu C, Huang H, Xu Z, Liu S, Cheng Z, Ma Y 2018 Supercond. Sci. Technol. 31 06LT02

  • [1]

    Bednorz J G, Mller K A 1986 Z. Phys. B: Condens. Matter 64 189

    [2]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [3]

    Chen G F, Li Z, Li G, Zhou J, Wu D, Dong J, Hu W Z, Zheng P, Chen Z J, Yuan H Q, Singleton J, Luo J L, Wang N L 2008 Phys. Rev. Lett. 101 057007

    [4]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [5]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [6]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [7]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262

    [8]

    Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L, Mao Z Q 2008 Phys. Rev. B 78 224503

    [9]

    Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y, Jin C Q 2008 Solid State Commun. 148 538

    [10]

    Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520

    [11]

    Jaroszynski J, Hunte F, Balicas L, Jo Y J, Raičević I, Gurevich A, Larbalestier D C, Balakirev F F, Fang L, Cheng P, Jia Y, Wen H H 2008 Phys. Rev. B 78 174523

    [12]

    Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L, Wang N L 2009 Nature 457 565

    [13]

    Ivanovskii A L 2008 Phys. Usp. 51 1229

    [14]

    Ma Y W 2015 Physica C 516 17

    [15]

    Togano K, Matsumoto A, Kumakura H 2011 Appl. Phys. Express 4 043101

    [16]

    Sato K, Kobayashi S, Nakashima T 2012 Jpn. J. Appl. Phys. 51 010006

    [17]

    Abetti P A 2009 Int. J. Technol. Manage. 48 423

    [18]

    Wang L, Qi Y P, Wang D L, Gao Z S, Zhang X P, Zhang Z Y, Wang C L, Ma Y W 2010 Supercond. Sci. Technol. 23 075005

    [19]

    Wang L, Ma Y W, Wang Q X, Li K, Zhang X X, Qi Y P, Gao Z S, Zhang X P, Wang D L, Yao C, Wang C L 2011 Appl. Phys. Lett. 98 222504

    [20]

    Wang C, Gao Z, Yao C, Wang L, Qi Y, Wang D, Zhang X, Ma Y 2011 Supercond. Sci. Technol. 24 065002

    [21]

    Dong C H, Yao C, Lin H, Zhang X P, Zhang Q J, Wang D L, Ma Y W, Oguro H, Awaji S, Watanabe K 2015 Scr. Mater. 99 33

    [22]

    Wang C, Wang L, Gao Z, Yao C, Wang D, Qi Y, Zhang X, Ma Y 2011 Appl. Phys. Lett. 98 042508

    [23]

    Wang L, Qi Y P, Wang D L, Zhang X P, Gao Z S, Zhang Z Y, Ma Y W, Awaji S, Nishijima G, Watanabe K 2010 Physica C 470 183

    [24]

    Qi Y, Wang L, Wang D, Zhang Z, Gao Z, Zhang X, Ma Y 2010 Supercond. Sci. Technol. 23 055009

    [25]

    Yao C, Wang C L, Zhang X P, Wang L, Gao Z S, Wang D L, Wang C D, Qi Y P, Ma Y W, Awaji S, Watanabe K 2012 Supercond. Sci. Technol. 25 035020

    [26]

    Gao Z, Wang L, Yao C, Qi Y, Wang C, Zhang X, Wang D, Wang C, Ma Y 2011 Appl. Phys. Lett. 99 242506

    [27]

    Lin H, Yao C, Zhang X P, Zhang H T, Wang D L, Zhang Q J, Ma Y W 2013 Physica C 495 48

    [28]

    Lin H, Yao C, Zhang X P, Zhang H T, Zhang Q J, Wang D L, Dong C H, Ma Y W 2016 Scr. Mater. 112 128

    [29]

    Weiss J D, Tarantini C, Jiang J, Kametani F, Polyanskii A A, Larbalestier D C, Hellstrom E E 2012 Nat. Mater. 11 682

    [30]

    Pyon S, Tsuchiya Y, Inoue H, Kajitani H, Koizumi N, Awaji S, Watanabe K, Tamegai T 2014 Supercond. Sci. Technol. 27 095002

    [31]

    Gao Z S, Ma Y W, Yao C, Zhang X P, Wang C L, Wang D L, Awaji S, Watanabe K 2012 Sci. Rep. 2 998

    [32]

    Yao C, Lin H, Zhang X P, Dong C H, Wang D L, Zhang Q J, Ma Y W, Awaji S, Watanabe K 2015 IEEE Trans. Appl. Supercond. 25 7300204

    [33]

    Zhang X P, Yao C, Lin H, Cai Y, Chen Z, Li J Q, Dong C H, Zhang Q J, Wang D L, Ma Y W, Oguro H, Awaji S, Watanabe K 2014 Appl. Phys. Lett. 104 202601

    [34]

    Lin H, Yao C, Zhang X, Dong C, Zhang H, Wang D, Zhang Q, Ma Y, Awaji S, Watanabe K, Tian H, Li J 2014 Sci. Rep. 4 6944

    [35]

    Huang H, Yao C, Dong C H, Zhang X P, Wang D L, Cheng Z, Li J Q, Awaji S, Wen H H, Ma Y W 2018 Supercond. Sci. Technol. 31 015017

    [36]

    Gao Z S, Wang L, Qi Y P, Wang D L, Zhang X P, Ma Y W 2008 Supercond. Sci. Technol. 21 105024

    [37]

    Gao Z S, Wang L, Qi Y P, Wang D L, Zhang X P, Ma Y W, Yang H, Wen H H 2008 Supercond. Sci. Technol. 21 112001

    [38]

    Qi Y P, Zhang X P, Gao Z S, Zhang Z Y, Wang L, Wang D L, Ma Y W 2009 Physica C 469 717

    [39]

    Wang L, Qi Y P, Zhang X P, Wang D L, Gao Z S, Wang C L, Yao C, Ma Y W 2011 Physica C 471 1689

    [40]

    Lin K L, Yao C, Zhang X P, Zhang Q J, Huang H, Li C, Wang D L, Dong C H, Ma Y W, Awaji S, Watanabe K 2016 Supercond. Sci. Technol. 29 095006

    [41]

    Togano K, Gao Z, Matsumoto A, Kikuchi A, Kumakura H 2017 Supercond. Sci. Technol. 30 015012

    [42]

    Yao C, Wang D L, Huang H, Dong C H, Zhang X P, Ma Y W, Awaji S 2017 Supercond. Sci. Technol. 30 075010

    [43]

    Gao Z S, Togano K, Matsumoto A, Kumakura H 2015 Supercond. Sci. Technol. 28 012001

    [44]

    Gao Z S, Togano K, Zhang Y C, Matsumoto A, Kikuchi A, Kumakura H 2017 Supercond. Sci. Technol. 30 095012

    [45]

    Ding Q P, Prombood T, Tsuchiya Y, Nakajima Y, Tamegai T 2012 Supercond. Sci. Technol. 25 035019

    [46]

    Pyon S, Yamasaki Y, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K, Tamegai T 2015 Supercond. Sci. Technol. 28 125014

    [47]

    Pyon S, Suwa T, Park A, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K, Tamegai T 2016 Supercond. Sci. Technol. 29 115002

    [48]

    Pyon S, Suwa T, Tamegai T, Takano K, Kajitani H, Koizumi N, Awaji S, Zhou N, Shi Z 2018 Supercond. Sci. Technol. 31 055016

    [49]

    Liu S F, Lin K L, Yao C, Zhang X P, Dong C H, Wang D L, Awaji S, Kumakura H, Ma Y W 2017 Supercond. Sci. Technol. 30 115007

    [50]

    Yao C, Ma Y W, Zhang X P, Wang D L, Wang C L, Lin H, Zhang Q J 2013 Appl. Phys. Lett. 102 082602

    [51]

    Yao C, Lin H, Zhang Q J, Zhang X P, Wang D L, Dong C H, Ma Y W, Awaji S, Watanabe K 2015 J. Appl. Phys. 118 203909

    [52]

    Zhang X P, Oguro H, Yao C, Dong C H, Xu Z T, Wang D L, Awaji S, Watanabe K, Ma Y W 2017 IEEE Trans. Appl. Supercond. 27 7300705

    [53]

    Hosono H, Yamamoto A, Hiramatsu H, Ma Y 2018 Mater. Today 21 278

    [54]

    Kovč P, Kopera L, Meliek T, Kulich M, Huek I, Lin H, Yao C, Zhang X, Ma Y 2015 Supercond. Sci. Technol. 28 035007

    [55]

    Liu F, Yao C, Liu H, Dai C, Qin J, Ci L, Mao Z, Zhou C, Shi Y, Jin H, Wang D, Ma Y 2017 Supercond. Sci. Technol. 30 07LT01

    [56]

    Awaji S, Nakazawa Y, Oguro H, Tsuchiya Y, Watanabe K, Shimada Y, Lin H, Yao C, Zhang X, Ma Y 2017 Supercond. Sci. Technol. 30 035018

    [57]

    Zhu Y, Wang D, Zhu C, Huang H, Xu Z, Liu S, Cheng Z, Ma Y 2018 Supercond. Sci. Technol. 31 06LT02

  • [1] 李更, 丁洪, 汪自强, 高鸿钧. 铁基超导体中的马约拉纳零能模及其阵列构筑. 物理学报, 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [2] 周阳, 马啸, 周星宇, 张春辉, 王琴. 实用化态制备误差容忍参考系无关量子密钥分发协议. 物理学报, 2023, 72(24): 240301. doi: 10.7498/aps.72.20231144
    [3] 朱佳莉, 曹原, 张春辉, 王琴. 实用化量子密钥分发光网络中的资源优化配置. 物理学报, 2023, 72(2): 020301. doi: 10.7498/aps.72.20221661
    [4] 王妙, 杨万民, 王小梅, 昝雅婷, 陈森林, 张明, 胡成西. 二次单畴化制备GdBCO超导块材的方法及其性能. 物理学报, 2021, 70(15): 158101. doi: 10.7498/aps.70.20202141
    [5] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质. 物理学报, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [6] 王鑫萌, 石鹏, 张学强, 陈爱兵, 张强. 实用化条件下金属锂负极失效的研究. 物理学报, 2020, 69(22): 228501. doi: 10.7498/aps.69.20200906
    [7] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [8] 徐海超, 牛晓海, 叶子荣, 封东来. 铁基超导体系基于电子关联强度的统一相图. 物理学报, 2018, 67(20): 207405. doi: 10.7498/aps.67.20181541
    [9] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [10] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体. 物理学报, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [11] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [12] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [13] 郭静, 孙力玲. 压力下碱金属铁硒基超导体中的现象与物理. 物理学报, 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
    [14] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择. 物理学报, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [15] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究. 物理学报, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [16] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [17] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [18] 郭蕊香, 贾晓军, 谢常德, 彭堃墀. 实用化多功能光压缩器. 物理学报, 2002, 51(6): 1262-1267. doi: 10.7498/aps.51.1262
    [19] 熊玉峰, 金 铎, 姚玉书, 吴 非, 贾顺莲, 赵忠贤. 新块材超导体Pr1-xCaxBa2Cu3O7-δ(0.4≤x≤0.6)的高压合成与超导电性. 物理学报, 1998, 47(10): 1713-1719. doi: 10.7498/aps.47.1713
    [20] 冯勇, 周廉. 粉末熔化法(YHo)Ba2Cu3O7-y超导体的性能与微结构. 物理学报, 1992, 41(11): 1880-1883. doi: 10.7498/aps.41.1880
计量
  • 文章访问数:  6517
  • PDF下载量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-28
  • 修回日期:  2018-08-02
  • 刊出日期:  2019-10-20

/

返回文章
返回